Nav: Home

Reinforced adversarial neural model for drug discovery and longevity biotechnology industry

June 26, 2018

Tuesday, June 26st, Rockville, MD - Today, Insilico Medicine, Inc., a Rockville-based next-generation artificial intelligence company specializing in the application of deep learning for target identification, drug discovery and aging research announces the publication of a new research paper "Reinforced Adversarial Neural Computer for De Novo Molecular Design" in The Journal of Chemical Information and Modeling. The authors presented an original deep neural network architecture named Reinforced Adversarial Neural Computer (RANC) for the de novo design of novel small-molecule organic structures utilizing the generative adversarial network (GAN) and reinforcement learning (RL) methods.

"In this work, we introduced RANC architecture for de novo molecular design. Our engine generates more unique and diverse structures as well as clusters with the lengths close to the reference samples, keeping the distributions of key molecular descriptors as in the training sets. As a result, many of the generated structures meet the crucial criteria used in medicinal chemistry of today and are able to pass medical chemistry filters. I hope this approach will become a starting point to making perfect molecules for specific targets and multiple targets that will have a much higher chance of becoming great drugs", said Evgeny Putin, the deep learning lead at Insilico Medicine.

In silico modeling is a crucial milestone in modern drug design & development. Although computer-aided approaches in this field are well-studied, the application of deep learning methods in this research area is at the beginning facing a lot of challenges.

The comparative results have shown that RANC trained on the SMILES string representation of the molecules outperforms the other methods by several metrics relevant to drug discovery: the number of unique structures, passing medicinal chemistry filters, Muegge criteria and high quantitative estimate of drug-likeness scores. RANC is able to generate structures that match the distributions of the key chemical features/descriptors (e.g. MW, logP, TPSA) and lengths of the SMILES strings in the training dataset. Therefore, RANC can be reasonably regarded as a promising starting point to develop novel molecules with activity against different biological targets or pathways.

This work was carried out in collaboration with one of the most prominent groups in AI-enabled chemistry and quantum chemistry, lead by Prof. Alan Aspuru-Guzik. One of the co-authors of the paper is Benjamin Sanchez-Lengeling - the author of the Objective-Reinforced Generative Adversarial Networks (ORGAN), one of the first objective--reinforced molecular generators.

From a medicinal chemistry perspective, it would be very interesting to investigate how the results of modeling depend on the carefully selected reference compounds as well as the application of the model for the generation of structures with biological activity toward specific targets.

For its work in the field of artificial intelligence for drug discovery and development, Insilico Medicine received the Frost & Sullivan 2018 North American Artificial Intelligence for Aging Research and Drug Development Technology Innovation Award. The company plans to use GAN-RL systems to target age-related diseases and aging itself.

"Technology leadership in artificial intelligence for drug discovery and biomarker development, academic excellence, extensive collaborations with pharmaceutical and consumer companies, novel methods of attracting top talent, and increasing global reach have allowed Insilico Medicine to build a credible and sustainable business model in the nascent longevity biotechnology industry," noted Neelotpal Goswami. "In recognition of its pioneering research and ability to introduce novel products and solutions for age management, Frost & Sullivan is pleased to present it with the 2018 Technology Innovation Award."
-end-
Insilico Medicine is regularly publishing research papers in peer-reviewed journals. The company was first who applied deep generative adversarial networks (GANs) to the generation of new molecular structures with specified parameters and published seminal proof of concept papers in the field. The paper published in Molecular Pharmaceutics in 2016 demonstrated the proof of concept of the application of deep neural networks for predicting the therapeutic class of the molecule using the transcriptional response data, received the American Chemical Society Editors' Choice Award. A recent paper published in November 2017 described the application of the next-generation AI and blockchain technologies to return the control over personal data back to the individual. One of the latest papers published in the Journals of Gerontology demonstrated the application of the deep neural networks to assessing the biological age of the patients.

For further information, images or interviews, please contact:

Contact: Qingsong Zhu, PhD
zhu@pharma.ai
Website: http://www.Insilico.com

About Insilico Medicine, Inc

Insilico Medicine, Inc. is an artificial intelligence company headquartered at the Emerging Technology Centers at the Johns Hopkins University Eastern campus in Baltimore, with R&D and management resources in Belgium, Russia, UK, Taiwan and Korea sourced through hackathons and competitions. The company and its scientists is dedicated to extending human productive longevity and transforming every step of the drug discovery and drug development process through excellence in biomarker discovery, drug development, digital medicine and aging research.

Insilico pioneered the applications of the generative adversarial networks (GANs) and reinforcement learning for generation of novel molecular structures for the diseases with a known target and with no known targets. In addition to working collaborations with the large pharmaceutical companies, the company is pursuing internal drug discovery programs in cancer, dermatological diseases, fibrosis, Parkinson's Disease, Alzheimer's Disease, ALS, diabetes, sarcopenia, and aging. Through a partnership with LifeExtension.com the company launched a range of nutraceutical products compounded using the advanced bioinformatics techniques and deep learning approaches. It also provides a range of consumer-facing applications including Young.AI.

In 2017, NVIDIA selected Insilico Medicine as one of the Top 5 AI companies in its potential for social impact. In 2018, the company was named one of the global top 100 AI companies by CB Insights. In 2018 it received the Frost & Sullivan 2018 North American Artificial Intelligence for Aging Research and Drug Development Award accompanied with the industry brief. Brief company video: https://www.youtube.com/watch?v=l62jlwgL3v8.

InSilico Medicine, Inc.

Related Artificial Intelligence Articles:

Applying artificial intelligence to science education
A new review published in the Journal of Research in Science Teaching highlights the potential of machine learning--a subset of artificial intelligence--in science education.
New roles for clinicians in the age of artificial intelligence
New Roles for Clinicians in the Age of Artificial Intelligence https://doi.org/10.15212/bioi-2020-0014 Announcing a new article publication for BIO Integration journal.
Artificial intelligence aids gene activation discovery
Scientists have long known that human genes are activated through instructions delivered by the precise order of our DNA.
Artificial intelligence recognizes deteriorating photoreceptors
A software based on artificial intelligence (AI), which was developed by researchers at the Eye Clinic of the University Hospital Bonn, Stanford University and University of Utah, enables the precise assessment of the progression of geographic atrophy (GA), a disease of the light sensitive retina caused by age-related macular degeneration (AMD).
Classifying galaxies with artificial intelligence
Astronomers have applied artificial intelligence (AI) to ultra-wide field-of-view images of the distant Universe captured by the Subaru Telescope, and have achieved a very high accuracy for finding and classifying spiral galaxies in those images.
Using artificial intelligence to smell the roses
A pair of researchers at the University of California, Riverside, has used machine learning to understand what a chemical smells like -- a research breakthrough with potential applications in the food flavor and fragrance industries.
Artificial intelligence could revolutionize sea ice warnings
Today, large resources are used to provide vessels in the polar seas with warnings about the spread of sea ice.
A hidden history of artificial intelligence in primary care
Artificial intelligence methods are being utilized in radiology, cardiology and other medical specialty fields to quickly and accurately process large quantities of health data to improve the diagnostic and treatment power of health care teams.
Identifying light sources using artificial intelligence
Identifying sources of light plays an important role in the development of many photonic technologies, such as lidar, remote sensing, and microscopy.
Artificial intelligence could serve as backup to radiologists' eyes
Deploying artificial intelligence could help radiologists to more accurately classify lung diseases.
More Artificial Intelligence News and Artificial Intelligence Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.