Nav: Home

Researchers discover volcanic heat source under glacier

June 26, 2018

KINGSTON, R.I. -- June 22, 2018 -- A researcher from the University of Rhode Island's Graduate School of Oceanography and five other scientists have discovered an active volcanic heat source beneath the Pine Island Glacier in Antarctica.

The discovery and other findings, which are critical to understanding the stability of the West Antarctic Ice Sheet, of which the Pine Island Glacier is a part, are published in the paper, "Evidence of an active volcanic heat source beneath the Pine Island Glacier," in the latest edition of Nature Communications.

Assistant Professor Brice Loose of Newport, a chemical oceanographer at GSO and the lead author, said the paper is based on research conducted during a major expedition in 2014 to Antarctica led by scientists from the United Kingdom. They worked aboard an icebreaker, the RRS James Clark Ross, from January to March, Antarctica's summer.

"We were looking to better understand the role of the ocean in melting the ice shelf," Loose said. "I was sampling the water for five different noble gases, including helium and xenon. I use these noble gases to trace ice melt as well as heat transport. Helium-3, the gas that indicates volcanism, is one of the suite of gases that we obtain from this tracing method.

"We weren't looking for volcanism, we were using these gases to trace other actions," he said. "When we first started seeing high concentrations of helium-3, we thought we had a cluster of bad or suspicious data."

The West Antarctic Ice Sheet lies atop a major volcanic rift system, but there had been no evidence of current magmatic activity, the URI scientist said. The last such activity was 2,200 years ago, Loose said. And while volcanic heat can be traced to dormant volcanoes, what the scientists found at Pine Island was new.

In the paper, Loose said that the volcanic rift system makes it difficult to measure heat flow to the West Antarctic Ice Sheet. "You can't directly measure normal indicators of volcanism -- heat and smoke -- because the volcanic rift is below many kilometers of ice," Loose said

But as the team conducted its research, it found high quantities of an isotope of helium, which comes almost exclusively from mantle, Loose said.

"When you find helium-3, it's like a fingerprint for volcanism. We found that it is relatively abundant in the seawater at the Pine Island shelf.

"The volcanic heat sources were found beneath the fastest moving and the fastest melting glacier in Antarctica, the Pine Island Glacier," Loose said. "It is losing mass the fastest."

He said the amount of ice sliding into the ocean is measured in gigatons. A gigaton equals 1 billion metric tons.

However, Loose cautions, this does not imply that volcanism is the major source of mass loss from Pine Island. On the contrary, "there are several decades of research documenting the heat from ocean currents is destabilizing Pine Island Glacier, which in turn appears to be related to a change in the climatological winds around Antarctica," Loose said. Instead, this evidence of volcanism is a new factor to consider when monitoring the stability of the ice sheet.

The scientists report in the paper that "helium isotope and noble gas measurements provide geochemical evidence of sub-glacial meltwater production that is subsequently transported to the cavity of the Pine Island Ice Shelf." They say that heat energy released by the volcanoes and hydrothermal vents suggests that the heat source beneath Pine Island is about 25 times greater than the bulk of heat flux from an individual dormant volcano.

Professor Karen Heywood, from the University of East Anglia in Norwich, the United Kingdom, and chief scientist for the expedition, said: "The discovery of volcanoes beneath the Antarctic ice sheet means that there is an additional source of heat to melt the ice, lubricate its passage toward the sea, and add to the melting from warm ocean waters. It will be important to include this in our efforts to estimate whether the Antarctic ice sheet might become unstable and further increase sea level rise."

Does that mean that global climate change is not a factor in the stability of the Pine Island Glacier?

No, said Loose. "Climate change is causing the bulk of glacial melt that we observe, and this newly discovered source of heat is having an as-yet undetermined effect, because we do not know how this heat is distributed beneath the ice sheet."

He said other studies have shown that melting caused by climate change is reducing the size and weight of the glacier, which reduces the pressure on the mantle, allowing greater heat from the volcanic source to escape and then warm the ocean water.

"Predicting the rate of sea level rise is going to be a key role for science over the next 100 years, and we are doing that. We are monitoring and modeling these glaciers," Loose said.

The scientists conclude by writing: "The magnitude and the variations in the rate of the volcanic heat supplied to the Pine Island Glacier, either by internal magma migration, or by an increase in volcanism as a consequence of ice sheet thinning, may impact the future dynamics of the Pine Island Glacier, during the contemporary period of climate-driven glacial retreat."

In addition to Heywood, Loose worked with Alberto C. Naveira Garabato, of the National Oceanography Centre at the University of Southampton, United Kingdom; Peter Schlosser of Arizona State University's School of Earth and Space Exploration and the Lamont-Doherty Earth Observatory at Columbia University; William Jenkins of the Woods Hole Oceanographic Institution in Massachusetts; and David Vaughn of the British Antarctic Survey, Cambridge, United Kingdom.
-end-


University of Rhode Island

Related Climate Change Articles:

Mysterious climate change
New research findings underline the crucial role that sea ice throughout the Southern Ocean played for atmospheric CO2 in times of rapid climate change in the past.
Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.