Nav: Home

Baboons shed light on antimicrobial resistance

June 26, 2018

Washington, DC - June 26, 2018 - Antibiotic resistance is an ancient feature of gut microbial communities and sharing habitat with humans has had an important impact on the structure and function of gut microbiota of non-human primates, according to a study involving wild and captive baboons. The study, published in the journal mSystems, is one of the first to provide a glimpse of the pre-antibiotic resistome of primates.

"The gut microbiomes of baboons look very different from humans, and within the baboon sets, the microbiomes of the captive baboons were different from the wild ones, supporting the hypothesis that something about captivity and human contact shifts the microbiomes," said principal study investigator Gautam Dantas, PhD, professor of pathology and immunology at Washington University in St. Louis, Missouri. "There is a gradient in the compositional differences of the gut microbiomes between humans with different lifestyles, with people living in developed nations and cities having similar microbiomes and then microbiomes looking less and less similar the further away you move toward the agrarian and hunter-gather lifestyle. This study shows you can now put non-human primates on that same gradient too."

By using wild versus captive nonhuman primates as a model for the human microbiome, the investigators showed very clearly that antibiotic resistance exists, even without human-produced antibiotic selection pressure, and that the microbiome of animals looks very different in wild populations. "As soon as you have contact with humans and human medicines, you shift the composition of the microbiome toward an industrialized human state and you enrich for antibiotic resistance, which tells us that this is a great risk factor," said Dr. Dantas.

"It is very difficult to find what the pre-antibiotic resistome looks like. That is what motivated this study," said Dr. Dantas. A major roadblock to understanding the impact of antibiotics on the human microbiome is finding samples from humans that have never been exposed to antibiotics.

The study was a collaborative effort between Dr. Dantas's laboratory, which performed the microbiology and genomics work, and several anthropologists with access to wild and captive primate populations. "We were very fortunate to get not just the samples, but the intellectual contributions of the anthropologists," said Dr. Dantas.

The researchers compared their data with published metagenomic datasets from humans and baboons to test the hypothesis that human contact correlated with substantial shifts in microbiota composition, function and resistome profiles compared to 'antibiotic naïve' baboon gut microbiota. Using the same genome sequencing technology employed by the Human Microbiome Project, the researchers analyzed fecal samples from baboons in regions of Zambia where the animals had minimal contact with humans and compared them to samples from captive baboons in the Southwest National Primate Research Center, in Texas.

After sequencing the DNA in the baboon fecal samples, the researchers mapped the metagenomic data to databases of resistance genes. Because these databases are biased towards known pathogens and human-related samples, the researchers used functional metagenomics, which allowed them to identify both known and novel resistance genes. "We take the fecal samples from the baboons and, before we do any sequencing, we clone the fecal metagenomic DNA recombinantly into an Escherichia coli (E. coli) expression system. Then, every clone in the E. coli library contains a random genetic fragment from the baboon microbiome. We plate those libraries of E. coli recombinants on petri dishes with antibiotics that will kill wild type E. coli and the only recombinants that can survive are those expressing a functional resistance gene from the baboon microbiome," explained Dr. Dantas.

The researchers identified functional antibiotic resistance genes in the gut microbiota of wild and captive baboon groups and marked variation in microbiota architecture and resistome across habitats and lifeways. Some of these resistance genes had never been described. Wild baboons had the lowest number of resistance genes, lower than captive baboons, and even lower than humans. Comparing the gut microbiomes of baboons and humans from the United States, Venezuela, Italy, and Malawi, as well as the remote Hadza tribe in Tanzania that was recently identified as being relatively antibiotic naïve, the researchers found that the captive baboons' microbiome and resistome resembled the isolated tribe most closely.

Finding resistance genes in populations that have not been exposed to human produced antibiotics is not novel. "Antibiotics are molecules that have been produced by soil bacteria for hundreds of millions of years. In the 1930s and 1940s, humans figured out how to bioprospect these molecules and produce them on a large scale and that changed the face of treating infectious diseases. Then resistance started increasing in pathogens, but resistance has existed in other bacteria for eons," said Dr. Dantas. "We believe that the wild baboons represent an ancestral state of antibiotic resistance and they have resistance genes, not because they have seen any human produced antibiotics, but rather, the ancient antibiotic resistance genes likely came from exchange with microbes from environments like the soil."

One surprising finding from the study was that wild baboon populations were enriched with Actinobacteria, a group of microbes that are important for digesting human breast milk and are normally associated with infancy in humans. "As human kids transition to solid food, those bacteria are depleted," said Dr. Dantas. "We were very, very surprised to find that particular class was highly enriched in the wild baboons, even in the adult baboon populations. We don't currently have a good explanation for this, but it probably has something to do with their diet." Bioprospecting these potentially beneficial bacteria from wild non-human primates could lead to new probiotic therapies.
-end-
The American Society for Microbiology is the largest single life science society, composed of more than 30,000 scientists and health professionals. ASM's mission is to promote and advance the microbial sciences.

ASM advances the microbial sciences through conferences, publications, certifications and educational opportunities. It enhances laboratory capacity around the globe through training and resources. It provides a network for scientists in academia, industry and clinical settings. Additionally, ASM promotes a deeper understanding of the microbial sciences to diverse audiences.

American Society for Microbiology

Related Antibiotics Articles:

Benefits, risks seen with antibiotics-first for appendicitis
Antibiotics are a good choice for some patients with appendicitis but not all, according to study results published today in the New England Journal of Medicine.
How antibiotics interact
Understanding bottleneck effects in the translation of bacterial proteins can lead to a more effective combination of antibiotics / study in 'Nature Communications'
Are antivitamins the new antibiotics?
Antibiotics are among the most important discoveries of modern medicine and have saved millions of lives since the discovery of penicillin almost 100 years ago.
Hygiene reduces the need for antibiotics by up to 30%
A new paper published in the American Journal of Infection Control (AJIC), finds improved everyday hygiene practices, such as hand-washing, reduces the risk of common infections by up to 50%, reducing the need for antibiotics, by up to 30%.
Antibiotics: City dwellers and children take the most
City dwellers take more antibiotics than people in rural areas; children and the elderly use them more often than middle-aged people; the use of antibiotics decreases as education increases, but only in rich countries: These are three of the more striking trends identified by researchers of the NRW Forschungskolleg ''One Health and Urban Transformation'' at the University of Bonn.
Metals could be the link to new antibiotics
Compounds containing metals could hold the key to the next generation of antibiotics to combat the growing threat of global antibiotic resistance.
Antibiotics from the sea
The team led by Prof. Christian Jogler of Friedrich Schiller University, Jena, has succeeded in cultivating several dozen marine bacteria in the laboratory -- bacteria that had previously been paid little attention.
Antibiotics not necessary for most toothaches, according to new ADA guideline
The American Dental Association (ADA) announced today a new guideline indicating that in most cases, antibiotics are not recommended for toothaches.
Antibiotics with novel mechanism of action discovered
Many life-threatening bacteria are becoming increasingly resistant to existing antibiotics.
Resistance can spread even without the use of antibiotics
Antibiotic resistance does not spread only where and when antibiotics are used in large quantities, ETH researchers conclude from laboratory experiments.
More Antibiotics News and Antibiotics Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.