Nav: Home

A Fox code for the face

June 26, 2018

In the developing face, how do stem cells know whether to become cartilage, bones or teeth? To begin to answer this question, scientists from the USC Stem Cell laboratory of Gage Crump tested the role of a key family of genes, called "Forkhead-domain transcription factors," or Fox. Their findings appear in the journal Development.

While mutations in the Fox genes can cause diseases ranging from cancer to language disorders, postdoc Pengfei Xu and her collaborators focused on how these genes affect facial development.

"While examination of Fox genes in the mammalian face reveals they are required for bone and palate formation, whether Fox genes broadly control regional facial skeletal fates, as well as their mechanisms of action, remains unclear," said Xu.

To observe this, the team created mutant zebrafish that lacked different types of Fox--specifically, Fox-C genes or Fox-F genes. They found that fish lacking Fox-C failed to form cartilage in the upper face. Fish lacking Fox-F genes had problems developing their jaws, cartilage in the middle of their faces and teeth.

Further experiments revealed that Fox-C and Fox-F have a role in helping another important gene, Sox9, activate a slew of additional genes that promote cartilage development in the embryo.

Other laboratories have noted similar effects in mice lacking Fox genes. These findings suggest that the Fox genes play a role in the facial development of not only zebrafish and mice, but also many other vertebrate species, including humans.

"Transcription factors like Sox9 play roles in many different organs in the body," said Crump, who is a professor of stem cell biology and regenerative medicine at USC. "This tour-de-force genetic study shows how a family of Fox factors direct cells to form only cartilage and teeth and not other cell types. This may help in strategies toward directing stem cells to form cartilage and teeth for future regenerative medicine applications."
-end-
Additional co-authors include Bartosz Balczerski, Amanda Ciozda and Kristin Louie from USC, and Veronika Oralova and Ann Huysseune from Ghent University in Belgium.

The research was funded by the National Institutes of Health (R01-DE018405 and R35-DE027550).

University of Southern California - Health Sciences

Related Stem Cells Articles:

SUTD researchers create heart cells from stem cells using 3D printing
SUTD researchers 3D printed a micro-scaled physical device to demonstrate a new level of control in the directed differentiation of stem cells, enhancing the production of cardiomyocytes.
More selective elimination of leukemia stem cells and blood stem cells
Hematopoietic stem cells from a healthy donor can help patients suffering from acute leukemia.
Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.