Nav: Home

Researchers develop synthetic T cells, mimics form and function of human version

June 26, 2018

UCLA researchers have developed synthetic T lymphocytes, or T cells, that are near-perfect facsimiles of human T cells.

The ability to create the artificial cells could be a key step toward more effective drugs to treat cancer and autoimmune diseases and could lead to a better understanding of human immune cells' behavior. Such cells also could eventually be used to boost the immune system of people with cancer or immune deficiencies.

The research team comprised scientists from the UCLA School of Dentistry, the UCLA Samueli School of Engineering and the department of chemistry and biochemistry in the UCLA College, and was led by Dr. Alireza Moshaverinia, an assistant professor of prosthodontics at the dental school. The findings are published in the journal Advanced Materials.

"The complex structure of T cells and their multifunctional nature have made it difficult for scientists to replicate them in the lab," Moshaverinia said. "With this breakthrough, we can use synthetic T cells to engineer more efficient drug carriers and understand the behavior of immune cells."

Natural T cells are difficult to use in research because they're very delicate, and because after they're extracted from humans and other animals, they tend to survive for only a few days.

"We were able to create a novel class of artificial T cells that are capable of boosting a host's immune system by actively interacting with immune cells through direct contact, activation or releasing inflammatory or regulatory signals," said Mohammad Mahdi Hasani-Sadrabadi, an assistant project scientist at UCLA Samueli. "We see this study's findings as another tool to attack cancer cells and other carcinogens."

T cells play a key role in the immune system. They are activated when infection enters the body and they flow through the bloodstream to reach the infected areas. Because they must squeeze between small gaps and pores, T cells have the ability to deform to as small as one-quarter of their normal size. They also can grow to almost three times their original size, which helps them fight off or overcome the antigens that attack the immune system.

Until recently, bioengineers hadn't been able to mimic the complex nature of human T cells. But the UCLA researchers were able to replicate their shape, size and flexibility, which enable it to perform its basic functions of targeting and homing in on infections.

The team fabricated T cells using a microfluidic system. (Microfluidics focuses on the behavior, control and manipulation of fluids, typically on a submillimeter scale.) They combined two different solutions -- mineral oil and an alginate biopolymer, a gum-like substance made from polysaccharides and water. When the two fluids combine, they create microparticles of alginate, which replicate the form and structure of natural T cells. The scientists then collected the microparticles from a calcium ion bath, and adjusted their elasticity by changing the concentration of calcium ions in the bath.

Once they had created T cells with the proper physical properties, the researchers needed to adjust the cells' biological attributes -- to give them the same traits that enable natural T cells to be activated to fight infection, penetrate human tissue and release cellular messengers to regulate inflammation. To do that, they coated the T cells with phospholipids, so that their exterior would closely mimic human cellular membranes. Then, using a chemical process called bioconjugation, the scientists linked the T cells with CD4 signalers, the particles that activate natural T cells to attack infection or cancer cells.

Moshaverinia said other scientists could use the same process to create various types of artificial cells, such as natural killer cells or microphages, for research on specific diseases or to help develop treatments; in the future, the approach could help scientists develop a database of a wide range of synthetic cells that mimic human cells.
-end-
The study's other authors, all of UCLA, are graduate student Fatemah Majedi; Steven Bensinger, a professor of microbiology, immunology and molecular genetics; Dr. Ben Wu, a professor of dentistry and bioengineering; Louis Bouchard, an associate professor of chemistry and biochemistry; and Paul Weiss, a distinguished professor of chemistry and biochemistry. Bensinger, Bouchard and Weiss are also members of the UCLA Jonsson Comprehensive Cancer Center.

This study was funded by the National Institute for Dental and Craniofacial Research. The authors report no commercial conflicts of interest.

University of California - Los Angeles

Related Cancer Articles:

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.
Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.
Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.