Nav: Home

Researchers discover more than 50 lakes beneath the Greenland Ice Sheet

June 26, 2019

Researchers have discovered 56 previously uncharted subglacial lakes beneath the Greenland Ice Sheet bringing the total known number of lakes to 60.

Although these lakes are typically smaller than similar lakes in Antarctica, their discovery demonstrates that lakes beneath the Greenland Ice Sheet are much more common than previously thought.

The Greenland Ice Sheet covers an area approximately seven times the size of the UK, is in places more than three kilometres thick and currently plays an important role in rising global sea levels.

Subglacial lakes are bodies of water that form beneath ice masses. Meltwater is derived from the pressure of the thick overlying ice, heat generated by the flow of the ice, geothermal heat retained in the Earth, or water on the surface of the ice that drains to the bed. This water can become trapped in depressions or due to variations in ice thickness.

Knowledge of these new lakes helps form a much fuller picture of where water occurs and how it drains under the ice sheet, which influences how the ice sheet will likely respond dynamically to rising temperatures.

Published in Nature Communications this week, their paper, "Distribution and dynamics of Greenland subglacial lakes", provides the first ice-sheet wide inventory of subglacial lakes beneath the Greenland Ice Sheet.

By analysing more than 500,000 km of airborne radio echo sounding data, which provide images of the bed of the Greenland Ice Sheet, researchers from the Universities of Lancaster, Sheffield and Stanford identified 54 subglacial lakes, as well as a further two using ice-surface elevation changes.

Lead author Jade Bowling of the Lancaster Environment Centre, Lancaster University, said:

"Researchers have a good understanding of Antarctic subglacial lakes, which can fill and drain and cause overlying ice to flow quicker. However, until now little was known about subglacial lake distribution and behaviour beneath the Greenland Ice Sheet.

"This study has for the first time allowed us to start to build up a picture of where lakes form under the Greenland Ice Sheet. This is important for determining their influence on the wider subglacial hydrological system and ice-flow dynamics, and improving our understanding of the ice sheet's basal thermal state."

The newly discovered lakes range from 0.2-5.9 km in length and the majority were found beneath relatively slow moving ice away from the largely frozen bed of the ice sheet interior and seemed to be relatively stable.

However, in the future as the climate warms, surface meltwater will form lakes and streams at higher elevations on the ice sheet surface, and the drainage of this water to the bed could cause these subglacial lakes to drain and therefore become active. Closer to the margin where water already regularly gets to the bed, the researchers saw some evidence for lake activity, with two new subglacial lakes observed to drain and then refill.

Dr Stephen J. Livingstone, Senior Lecturer in Physical Geography, University of Sheffield, said:

"The lakes we have identified tend to cluster in eastern Greenland where the bed is rough and can therefore readily trap and store meltwater and in northern Greenland, where we suggest the lakes indicate a patchwork of frozen and thawed bed conditions.

"These lakes could provide important targets for direct exploration to look for evidence of extreme life and to sample the sediments deposited in the lake that preserve a record of environmental change."
-end-
DOI 10.1038/s41467-019-10821-w

The paper will be available to view online at http://www.nature.com/ncomms.

Distribution and dynamics of Greenland subglacial lakes

J.S. Bowling1,2*, S.J. Livingstone2, A.J. Sole2, W. Chu3

1Lancaster Environment Centre, Lancaster University, Lancaster, UK, LA1 4YQ

2Department of Geography, University of Sheffield, Sheffield, UK, S10 2TN

3Department of Geophysics, Stanford University, Stanford, USA, CA 94305

*Corresponding author: j.bowling@lancaster.ac.uk

Pic cap: surface meltwater in Greenland

Credit Dr Andrew Sole, University of Sheffield for image gris_supra_hydro_ajs_5.jpg and to Winnie Chu, Stanford University for image IMG_1241.jpg.

Lancaster University

Related Ice Sheet Articles:

Greenland ice sheet meltwater can flow in winter, too
Liquid meltwater can sometimes flow deep below the Greenland Ice Sheet in winter, not just in the summer, according to CIRES-led work published in the AGU journal Geophysical Research Letters today.
Ice sheet melting: Estimates still uncertain, experts warn
Estimates used by climate scientists to predict the rate at which the world's ice sheets will melt are still uncertain despite advancements in technology, new research shows.
Thousands of meltwater lakes mapped on the east Antarctic ice sheet
The number of meltwater lakes on the surface of the East Antarctic Ice Sheet is more significant than previously thought, according to new research.
Researchers discover ice is sliding toward edges off Greenland Ice Sheet
They found that ice slides over the bedrock much more than previous theories predicted of how ice on the Greenland Ice Sheet moves.
A clearer picture of global ice sheet mass
Fluctuations in the masses of the world's largest ice sheets carry important consequences for future sea level rise, but understanding the complicated interplay of atmospheric conditions, snowfall input and melting processes has never been easy to measure due to the sheer size and remoteness inherent to glacial landscapes.
Researchers discover more than 50 lakes beneath the Greenland Ice Sheet
Researchers have discovered 56 previously uncharted subglacial lakes beneath the Greenland Ice Sheet bringing the total known number of lakes to 60.
Ice-sheet variability during the last ice age from the perspective of marine sediment
By using marine sediment cores from Northwestern Australia, a Japanese team led by National Institute of Polar Research (NIPR) and the University of Tokyo revealed that the global ice sheet during the last ice age had changed in shorter time scale than previously thought.
Novel hypothesis goes underground to predict future of Greenland ice sheet
The Greenland ice sheet melted a little more easily in the past than it does today because of geological changes, and most of Greenland's ice can be saved from melting if warming is controlled, says a team of Penn State researchers.
Greenland's southwest ice sheet particularly sensitive to warming
The ice fields of southwest Greenland are becoming particularly sensitive to a climate cycle called the North Atlantic Oscillation as global warming proceeds.
Antarctic ice sheet could suffer a one-two climate punch
Variations in the axial tilt of the Earth have significant implications for the rise and fall of the Antarctic Ice Sheet, the miles-deep blanket of ice that locks up huge volumes of water that, if melted, would dramatically elevate sea level and alter the world's coastlines.
More Ice Sheet News and Ice Sheet Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Processing The Pandemic
Between the pandemic and America's reckoning with racism and police brutality, many of us are anxious, angry, and depressed. This hour, TED Fellow and writer Laurel Braitman helps us process it all.
Now Playing: Science for the People

#568 Poker Face Psychology
Anyone who's seen pop culture depictions of poker might think statistics and math is the only way to get ahead. But no, there's psychology too. Author Maria Konnikova took her Ph.D. in psychology to the poker table, and turned out to be good. So good, she went pro in poker, and learned all about her own biases on the way. We're talking about her new book "The Biggest Bluff: How I Learned to Pay Attention, Master Myself, and Win".
Now Playing: Radiolab

Invisible Allies
As scientists have been scrambling to find new and better ways to treat covid-19, they've come across some unexpected allies. Invisible and primordial, these protectors have been with us all along. And they just might help us to better weather this viral storm. To kick things off, we travel through time from a homeless shelter to a military hospital, pondering the pandemic-fighting power of the sun. And then, we dive deep into the periodic table to look at how a simple element might actually be a microbe's biggest foe. This episode was reported by Simon Adler and Molly Webster, and produced by Annie McEwen and Pat Walters. Support Radiolab today at Radiolab.org/donate.