The two faces of the Jekyll gene

June 26, 2019

The corresponding genes are lineage-specific for the grass tribes Triticeae and Bromeae and functioned as drivers for the speciation process within the Poaceae.

The Jekyll gene was first described in 2006 by researchers from the IPK in Gatersleben. They found that while it was crucial for sexual reproduction and fertility in barley (Hordeum vulgare), it was also partially similar to the Cn4 toxin produced by scorpions and played a role in cell autolysis. Inspired by this seemingly two-faced nature of the gene, the researchers had named it after Dr. Jekyll, the main character with the split personalities Dr. Jekyll and Mr. Hyde and from the eponymous gothic novella. A follow-up study by the same group of IPK researchers, led by Dr. Ljudmilla Borisjuk, has now shown how stunningly apt their choice of name was.

Whilst working on Jekyll, Dr. V. Radchuk discovered that the gene exists as two different and much diverged allelic variants, Jek1 and Jek3. The Jek1/Jek3 sequences are located at the same chromosomal locus and are inherited in a monogenic Mendelian fashion, whilst Jek1 and Jek3 share identical signal peptides, conserved cysteine positions and direct repeats. Although the encoded protein sequences might just have over 50% similarity, the researchers found that Jek3 actually complements the function of Jek1 in Jek1-deficient plants. Further investigations showed that Jekyll likely emerged in the common ancestor of the tribes of the Triticeae, such as barley, and Bromeae, therefore functioning as a lineage specific gene and probable driver for the separation of the lineages within the Poaceae.

The dual allelic nature of Jekyll made the cover of The Plant Journal and was featured in the belonging Research Highlight. In the meanwhile, the authors have started looking into the newly arisen questions of the cause and benefits of this allelic diversity in barley.
-end-


Leibniz Institute of Plant Genetics and Crop Plant Research

Related Genes Articles from Brightsurf:

Are male genes from Mars, female genes from Venus?
In a new paper in the PERSPECTIVES section of the journal Science, Melissa Wilson reviews current research into patterns of sex differences in gene expression across the genome, and highlights sampling biases in the human populations included in such studies.

New alcohol genes uncovered
Do you have what is known as problematic alcohol use?

How status sticks to genes
Life at the bottom of the social ladder may have long-term health effects that even upward mobility can't undo, according to new research in monkeys.

Symphony of genes
One of the most exciting discoveries in genome research was that the last common ancestor of all multicellular animals already possessed an extremely complex genome.

New genes out of nothing
One key question in evolutionary biology is how novel genes arise and develop.

Good genes
A team of scientists from NAU, Arizona State University, the University of Groningen in the Netherlands, the Center for Coastal Studies in Massachusetts and nine other institutions worldwide to study potential cancer suppression mechanisms in cetaceans, the mammalian group that includes whales, dolphins and porpoises.

How lifestyle affects our genes
In the past decade, knowledge of how lifestyle affects our genes, a research field called epigenetics, has grown exponentially.

Genes that regulate how much we dream
Sleep is known to allow animals to re-energize themselves and consolidate memories.

The genes are not to blame
Individualized dietary recommendations based on genetic information are currently a popular trend.

Timing is everything, to our genes
Salk scientists discover critical gene activity follows a biological clock, affecting diseases of the brain and body.

Read More: Genes News and Genes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.