Nav: Home

Scientists developing way to help premature babies breathe easier

June 26, 2019

CINCINNATI--Researchers suggest a possible cell-based therapy to stimulate lung development in fragile premature infants who suffer from a rare condition called Bronchopulmonary Dysplasia (BPD), which in the most severe cases can lead to lifelong breathing problems and even death.

Scientists at Cincinnati Children's Hospital Medical Center report in the American Journal of Respiratory and Critical Care Medicine they studied genetic signatures in donated human neonatal lungs by using single-cell RNA sequencing analysis. They also performed extensive laboratory tests on mouse models of BPD, including computer-assisted bioinformatics analysis.

The tests led to a proposal to develop cell therapy based on what are called c-KIT endothelial progenitor cells. The cells are common in embryonic and neonatal lungs and help in the formation of capillaries and air sacs in the lungs called alveoli. But premature babies with already underdeveloped lungs frequently rely on mechanical breathing assistance, which further interferes with early lung development, according to Vlad Kalinichenko, MD, PhD, a physician/researcher at the Cincinnati Children's Perinatal Institute's Center for Lung Regenerative Medicine and lead study investigator.

"RNA sequencing of human and mouse neonatal lung tissue showed that pulmonary c-KIT endothelial progenitor cells require the c-KIT and FOXF1 proteins to stimulate the development of blood vessels and air sacs," Kalinichenko said. "The cells are highly sensitive to injury by high oxygen concentrations, so lung development in premature babies on mechanical oxygen assistance is impeded. Our findings suggest using c-KIT-positive endothelial cells from donors, or generating them with pluripotent stem cells, might be a way to treat BPD or other pediatric lung disorders associated with loss of alveoli and pulmonary microvasculature."

Kalinichenko and colleagues study extensively the critical role the FOXF1 gene has in lung development. The researchers also explore different situations where mutation of the gene can disrupt the function of the FOXF1 protein, affecting lung development or causing disease.

Preclinical Results Need More Study

This study is the first to suggest the possibility of using donated c-KIT pulmonary endothelial progenitor cells for therapy or those generated with pluripotent stem cells, which can become any cell type in the body and be derived from a patient's own cells. That conclusion was based in part on tests the researchers performed by using c-KIT-positive endothelial progenitor cells to treat neonatal mice that had been exposed to hyperpoxia (over oxygenation) to model the BPD condition in the animals. They found that the infusion of cells in peripheral blood increased the formation of pulmonary blood vessels and air sacs in the animals.

Extensive preclinical testing in larger laboratory animals, such as rats and sheep, will be needed before Kalinichenko and his colleagues would consider recommending the cell-therapy approach be tested in patients, he said. Future work will also include further technical refinement of the therapeutic approach and ongoing efficacy testing in animal models of BPD. It also includes developing a specific cell differentiation protocol for generating c-KIT-positive endothelial progenitor cells from induced pluripotent stem cells derived from patients.

Kalinichenko estimated the additional preclinical development work will require an estimated two to three years before the technology potentially reaches a point where it can be proposed for possible clinical testing.
-end-
Funding support for the study came from National Institutes of Health and the LungMAP precision medicine initiative at the National Heart Lung and Blood Institute (HL84151, HL141174, HL123490, HL132849, HL122642, HL124745, HL122638, HL122700).

Cincinnati Children's Hospital Medical Center

Related Blood Vessels Articles:

Study: Use of prefabricated blood vessels may revolutionize root canals
Researchers at OHSU in Portland, Oregon, have developed a process by which they can engineer new blood vessels in teeth, creating better long-term outcomes for root canal patients and clinicians.
New findings on formation and malformation of blood vessels
In diseases like cancer, diabetes, rheumatism and stroke, a disorder develops in the blood vessels that exacerbates the condition and obstructs treatment.
Targeting blood vessels to improve cancer immunotherapy
EPFL scientists have improved the efficacy of cancer immunotherapy by blocking two proteins that regulate the growth of tumor blood vessels.
Reprogrammed blood vessels promote cancer spread
Tumor cells use the bloodstream to spread in the body.
Neurons modulate the growth of blood vessels
A team of researchers at Karlsruhe Institute of Technology shake at the foundations of a dogma of cell biology.
Sensor for blood flow discovered in blood vessels
The PIEZO1 cation channel translates mechanical stimulus into a molecular response to control the diameter of blood vessels.
Blood vessels control brain growth
Blood vessels play a vital role in stem cell reproduction, enabling the brain to grow and develop in the womb, reveals new UCL research in mice.
No blood vessels without cloche
After 20 years of searching, scientists discover the mystic gene controlling vessel and blood cell growth in the embryo.
New way of growing blood vessels could boost regenerative medicine
Growing tissues and organs in the lab for transplantation into patients could become easier after scientists discovered an effective way to produce three-dimensional networks of blood vessels, vital for tissue survival yet a current stumbling block in regenerative medicine.
Regenerating blood vessels gets $2.7 million grant
Biomedical engineers in the Cockrell School of Engineering at The University of Texas at Austin have received $2.7 million in funding to advance a treatment that regenerates blood vessels.

Related Blood Vessels Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#SB2 2019 Science Birthday Minisode: Mary Golda Ross
Our second annual Science Birthday is here, and this year we celebrate the wonderful Mary Golda Ross, born 9 August 1908. She died in 2008 at age 99, but left a lasting mark on the science of rocketry and space exploration as an early woman in engineering, and one of the first Native Americans in engineering. Join Rachelle and Bethany for this very special birthday minisode celebrating Mary and her achievements. Thanks to our Patreons who make this show possible! Read more about Mary G. Ross: Interview with Mary Ross on Lash Publications International, by Laurel Sheppard Meet Mary Golda...