Nav: Home

Genetically modified virus combats prostate cancer

June 26, 2019

Researchers at the São Paulo State Cancer Institute (ICESP) in Brazil have succeeded in using a genetically manipulated virus to destroy tumor cells upon injection into mice with prostate cancer.

The virus also made tumor cells more sensitive to chemotherapy drugs, halting tumor progression and almost eliminating tumors in some cases.

The results were obtained by a team led by Bryan Eric Strauss, head of the Viral Vector Laboratory at ICESP's Center for Translational Research in Oncology (CTO), and are described in an article in Gene Therapy, a journal published by Springer Nature.

The research was supported by São Paulo Research Foundation - FAPESP under the aegis of the Thematic Project "Cancer gene therapy: strategic positioning for translational studies". Brazil's National Council for Scientific and Technological Development (CNPq) also supplied funding, as did Sanofi.

"We used a combination of gene therapy and chemotherapy to combat prostate cancer in mice," said Strauss. "We chose the weapon we considered most likely to work as a tumor suppressant," he said, referring to p53, a gene that controls important aspects of cell death and is present in both rodents and humans.

In the laboratory, the gene was inserted into the genetic code of an adenovirus. The modified virus was then injected directly into tumors in mice.

"First, we implanted human prostate cancer cells in the mice and waited for tumors to grow. We then injected the virus directly into the tumors. We repeated this procedure several times. On two of these occasions, we also systemically administered cabazitaxel, a drug commonly used in chemotherapy. After that, we observed the mice to see if the tumors developed," Strauss said.

The experiments used several groups of mice, all of which were inoculated with prostate tumor cells. To verify the efficacy of the gene therapy, the researchers administered an unrelated virus to one of the groups as a control.

The second group received only the virus with p53. The third group received only cabazitaxel. The fourth group, corresponding to 25% of the mice, received a combination of the drug and the virus.

When the tumor cells were infected by the modified virus, it penetrated the cell nucleus - where genes act - and triggered cell death. The p53 gene was particularly effective at inducing cell death in prostate cancer.

"Individual treatments with p53 or cabazitaxel alone had an intermediate effect in terms of controlling tumor growth, but the combination had the most striking result, totally inhibiting tumors," Strauss said.

The experiments proved that the modified virus caused the death of the tumor cells it infected. "The association of the drug with gene therapy resulted in full control of tumor growth. In other words, we observed an additive or even synergistic effect. It can also be assumed that the virus with p53 made tumor cells more sensitive to the action of the chemotherapy drug," he said.

According to Strauss, the virus cannot be injected into the bloodstream. "For the therapy to work, we need to inject the virus directly into tumor cells," he said.

Tumors can evidently be controlled using chemotherapy drugs alone, he recalled, but the high doses required can have significant side effects. One is leukopenia, or loss of white blood cells, a constraint for this type of chemotherapy because it impairs the immune system.

"In our study, we used a subtherapeutic dose, which was not sufficient to control the tumor. This was done to avoid leukopenia," Strauss said.

Immune system

Destroying tumor cells with p53 does not guarantee that all cancer cells will be eliminated, including metastases. Stimulation of the organism's immune response was the answer found by the researchers.

According to Strauss, if the combination of p53 and cabazitaxel is not sufficient to activate the immune system, the use of a second gene in addition to p53 can be considered.

The interferon-beta gene was chosen for its key role in the immune system. Interferons are proteins produced by leukocytes (white blood cells) and fibroblasts that interfere with the replication of fungi, viruses, bacteria and tumor cells while also stimulating the defense activities of other cells.

"Both p53 and interferon-beta can kill tumor cells. We wanted to combine them for cell death to wake up the immune system. This is known as immunogenic cell death," Strauss said.

Previous studies by the group served as a basis for the idea. When a combination of ARF (a functional partner of p53) and interferon-beta was inserted into the tumor cell nucleus, the mouse's immune system ceased recognizing the tumor cell as part of its organism and identified it as an external agent to be combated.

"When this happens, the immune system combats tumor cells both at the treatment site and in tumors located elsewhere," Strauss said.

"Our goal now is to refine these approaches. We're engaged in experiments to find out whether they deserve to advance to the stage of clinical trials in human patients."
-end-
About São Paulo Research Foundation (FAPESP)

The São Paulo Research Foundation (FAPESP) is a public institution with the mission of supporting scientific research in all fields of knowledge by awarding scholarships, fellowships and grants to investigators linked with higher education and research institutions in the State of São Paulo, Brazil. FAPESP is aware that the very best research can only be done by working with the best researchers internationally. Therefore, it has established partnerships with funding agencies, higher education, private companies, and research organizations in other countries known for the quality of their research and has been encouraging scientists funded by its grants to further develop their international collaboration. You can learn more about FAPESP at http://www.fapesp.br/en and visit FAPESP news agency at http://www.agencia.fapesp.br/en to keep updated with the latest scientific breakthroughs FAPESP helps achieve through its many programs, awards and research centers. You may also subscribe to FAPESP news agency at http://agencia.fapesp.br/subscribe.

Fundação de Amparo à Pesquisa do Estado de São Paulo

Related Prostate Cancer Articles:

First prostate cancer therapy to target genes delays cancer progression
For the first time, prostate cancer has been treated based on the genetic makeup of the cancer, resulting in delayed disease progression, delayed time to pain progression, and potentially extending lives in patients with advanced, metastatic prostate cancer, reports a large phase 3 trial.
Men taking medications for enlarged prostate face delays in prostate cancer diagnosis
University of California San Diego School of Medicine researchers report that men treated with medications for benign prostatic hyperplasia (enlarged prostate) experienced a two-year delay in diagnosis of their prostate cancer and were twice as likely to have advanced disease upon diagnosis.
CNIO researchers confirm links between aggressive prostate cancer and hereditary breast cancer
The study has potential implications for families with members suffering from these types of tumours who are at an increased risk of developing cancer.
Distinguishing fatal prostate cancer from 'manageable' cancer now possible
Scientists at the University of York have found a way of distinguishing between fatal prostate cancer and manageable cancer, which could reduce unnecessary surgeries and radiotherapy.
Researchers find prostate cancer drug byproduct can fuel cancer cells
A genetic anomaly in certain men with prostate cancer may impact their response to common drugs used to treat the disease, according to new research at Cleveland Clinic.
ASCO and Cancer Care Ontario update guideline on radiation therapy for prostate cancer
The American Society of Clinical Oncology (ASCO) and Cancer Care Ontario today issued a joint clinical practice guideline update on brachytherapy (internal radiation) for patients with prostate cancer.
Patient prostate tissue used to create unique model of prostate cancer biology
For the first time, researchers have been able to grow, in a lab, both normal and primary cancerous prostate cells from a patient, and then implant a million of the cancer cells into a mouse to track how the tumor progresses.
Moffitt Cancer Center awarded $3.2 million grant to study bone metastasis in prostate cancer
Moffitt researchers David Basanta, Ph.D., and Conor Lynch, Ph.D., have been awarded a U01 grant to investigate prostate cancer metastasis.
Prostate cancer discovery may make it easier to kill cancer cells
A newly discovered connection between two common prostate cancer treatments may soon make prostate cancer cells easier to destroy.
New test for prostate cancer significantly improves prostate cancer screening
A study from Karolinska Institutet in Sweden shows that a new test for prostate cancer is better at detecting aggressive cancer than PSA.
More Prostate Cancer News and Prostate Cancer Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Accessing Better Health
Essential health care is a right, not a privilege ... or is it? This hour, TED speakers explore how we can give everyone access to a healthier way of life, despite who you are or where you live. Guests include physician Raj Panjabi, former NYC health commissioner Mary Bassett, researcher Michael Hendryx, and neuroscientist Rachel Wurzman.
Now Playing: Science for the People

#544 Prosperity Without Growth
The societies we live in are organised around growth, objects, and driving forward a constantly expanding economy as benchmarks of success and prosperity. But this growing consumption at all costs is at odds with our understanding of what our planet can support. How do we lower the environmental impact of economic activity? How do we redefine success and prosperity separate from GDP, which politicians and governments have focused on for decades? We speak with ecological economist Tim Jackson, Professor of Sustainable Development at the University of Surrey, Director of the Centre for the Understanding of Sustainable Propserity, and author of...
Now Playing: Radiolab

An Announcement from Radiolab