New GSA bulletin study of the 2014 Oso landslide

June 26, 2019

Boulder, Colo., USA: As a compelling example of a large-mobility landslide, the 22 March 2014 landslide near Oso, Washington, USA, was particularly devastating, traveling across a 1-km-plus-wide river valley, killing 43 people, destroying dozens of homes, and temporarily closing a well-traveled highway.

To resolve causes for the landslide's behavior and mobility, Brian Collins and Mark Reid of the U.S. Geological Survey conducted detailed post-event field investigations and material testing of soils involved in the failure.

How far a landslide moves from the site where it began can, of course, vastly amplify the consequences of slope failure. Some landslides stop moving close to where they began, and others are very mobile and can travel long distances, affecting not only what is located at the base of the slope, but also farther away.

Collins and Reid mapped the geology and structure of the Oso landslide deposit by making multiple visits to the site over the course of three years. Some of the data they collected were highly ephemeral, being obscured by erosion and vegetation within one year of the landslide and highlighting the need to record many observations within a few months of the disaster.

Using "boots-on-the-ground" geologic mapping techniques, combined with high-resolution orthoimagery and airborne LiDAR data, they reconstructed the likely sequence of events that led to the landslide's large mobility. Their mapping and analyses show that the approximately nine-million-cubic-meter landslide underwent rapid extension or stretching in a closely timed sequence of events that led to the landslide overrunning the, at-the-time, saturated flood plain forming the valley floor.

The large and rapid failure of the landslide caused the flood plain, composed of alluvial sands and gravels, to liquefy through a process of pore-pressure generation and consequent liquefaction. Liquefaction greatly reduced the strength along the base of the landslide and enabled it to travel over 1 km across the valley flats.

Collins and Reid found extensive evidence of high soil-water pore pressure during their field work by identifying and mapping of hundreds of "sand boils" -- typically decimeter-sized cones of sand that indicated locations where liquefied alluvium tried to escape from a weakened base beneath the landslide. In their new GSA Bulletin article, Collins and Reid present their mapping and interpreted landslide sequence, as well as analyses that show how the basal liquefaction mechanism likely occurred at the site of the Oso landslide. They hypothesize that this mechanism might enhance mobility of other landslides in similar settings.

Enhanced landslide mobility by basal liquefaction: The 2014 SR530 (Oso), Washington, landslide

Brian Collins (, Mark Reid, U.S. Geological Survey, Landslide Hazards Program, Menlo Park, California. URL:

GSA BULLETIN articles published ahead of print are online at Representatives of the media may obtain complimentary copies of articles by contacting Kea Giles. Please discuss articles of interest with the authors before publishing stories on their work, and please make reference to The Geological Society of America Bulletin in articles published. Non-media requests for articles may be directed to GSA Sales and Service,

The Geological Society of America
Release No. 19-23
Contact: Kea Giles

Geological Society of America

Related Landslides Articles from Brightsurf:

Simple actions can help people survive landslides
Simple actions can dramatically improve a person's chances of surviving a landslide, according to records from 38 landslides in the US and around the world.

Landslides have long-term effects on tundra vegetation
Landslides have long-term effects on tundra vegetation, a new study shows.

Most landslides in western Oregon triggered by heavy rainfall, not big earthquakes
Deep-seated landslides in the central Oregon Coast Range are triggered mostly by rainfall, not by large offshore earthquakes.

FSU researcher detects unknown submarine landslides in Gulf of Mexico
A Florida State University researcher has used new detection methods to identify 85 previously unknown submarine landslides that occurred in the Gulf of Mexico between 2008 and 2015, leading to questions about the stability of oil rigs and other structures, such as pipelines built in the region.

Climate change could trigger more landslides in High Mountain Asia
More frequent and intense rainfall events due to climate change could cause more landslides in the High Mountain Asia region of China, Tibet and Nepal, according to the first quantitative study of the link between precipitation and landslides in the region.

Martian landslides not conclusive evidence of ice
Giant ridges on the surface of landslides on Mars could have formed without ice, challenging their use by some as unequivocal evidence of past ice on the red planet, finds a new UCL-led study using state-of-the-art satellite data.

Ground failure study shows deep landslides not reactivated by 2018 Anchorage Quake
Major landslides triggered by the 1964 magnitude 9.2 Great Alaska earthquake responded to, but were not reactivated by, the magnitude 7.1 Anchorage earthquake that took place 30 November 2018, researchers concluded in a new study published in Seismological Research Letters.

Rice irrigation worsened landslides in deadliest earthquake of 2018 finds NTU study
Irrigation significantly exacerbated the earthquake-triggered landslides in Palu, on the Indonesian island of Sulawesi, in 2018, according to an international study led by Nanyang Technological University, Singapore (NTU Singapore) scientists.

Precursors of a catastrophic collapse
The flanks of many island volcanoes slide very slowly towards the sea.

Quick reconnaissance after 2018 Anchorage quake reveals signs of ground failure
A day after the Nov. 30, 2018, magnitude 7 earthquake in Anchorage, Alaska, US Geological Survey scientists Robert Witter and Adrian Bender had taken to the skies.

Read More: Landslides News and Landslides Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to