Function-based sequencing technique permits analysis of just a single bacteria cell

June 26, 2020

A new function-based sequencing technique using optical tweezers and taking advantage of the properties of gravity is letting researchers analyze bacteria cells one by one. The study, conducted by researchers from the Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT) of the Chinese Academy of Sciences, was published in Small on June 9.

Bacteria cells are so teeny tiny that it has been very difficult to analyze just one bacterial cell, or bacterium, at a time. As a result, lots of them, sometimes millions at a time, have to be analyzed simultaneously. This tells us a lot about the group as a whole, but it prevents researchers from being able to investigate the link between a single bacterium's genotype, or complete set of genes, and its phenotype, or the set of characteristics that result from the interaction of its genes and the environment.

A simple way to think about the distinction between genotype and phenotype is to note that while a single corn plant's genotype might allow it to grow three feet tall, if not much fertilizer is applied, then the corn plant's phenotype might be that it only grew to be two feet tall.  

Analysis of the link between genotype and phenotype is straightforward for such a large organism, and very useful too.

Similar insights about the genotype-phenotype relationship of a single bacterium, not least with respect to infectious disease, have long been sought but hindered by a bacterium's size, which are typically just a few millionths of a meter in length. 

Researchers from the Single-Cell Center at QIBEBT have developed a bacteria-profiling technique called Raman-Activated Gravity-driven single-cell Encapsulation and Sequencing, or RAGE sequencing. In the technique, the phenotypes of individual cells are analyzed one by one, then carefully packaged in a 'picoliter microdroplet' (a trillionth of a liter) that is exported and indexed in a one cell per test-tube manner ready for gene sequencing later on. 

The process involves a RAGE 'chip' of two quartz layers bonded together and that have an inlet hole, oil well, and micro-channel etched into them. 'Optical tweezers', or a highly focused laser beam that produces an attractive or repulsive force, manipulates the bacterium in liquid through the channel, assisted by gravity.

The form, structure and metabolic features of the bacterium - essentially its phenotype - are then investigated via a detection window using 'Raman spectroscopy', an analytical technique that exploits the interaction of light with the chemical bonds within a material.

"Finally the bacterium is encapsulated in the microdroplet, which is then transferred to a tube for gene sequencing or cultivation of the cell," said Prof. MA Bo, corresponding author of the study.

The microdroplet packaging is extremely important, as it allows the very small amount of DNA in a single bacterial cell to be amplified in a very even way, a key challenge for decoding its genome fully, according to XU Teng, a graduate student on the team that developed the method.  

"We are able to, directly from a urine sample, obtain antibiotic resistance features and an essentially complete genome sequence simultaneously from precisely one cell. This offers the highest possible resolution for bacterial diagnosis and drug treatment," said Prof. XU Jian, another corresponding author of the study. 

Based on this technology, the researchers have developed an instrument called CAST-R to support rapid antibiotic selection and genome sequencing of pathogens, all at the level of one cell. This instrument means much faster and more precise antibiotic treatment, and much higher sensitivity in tracking and fighting bacterial antibiotic resistance, which is a major threat to the future of human society.  

Chinese Academy of Sciences Headquarters

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to