Nav: Home

From the lab, the first cartilage-mimicking gel that's strong enough for knees

June 26, 2020

DURHAM, N.C. -- The thin, slippery layer of cartilage between the bones in the knee is magical stuff: strong enough to withstand a person's weight, but soft and supple enough to cushion the joint against impact, over decades of repeat use. That combination of soft-yet-strong has been hard to reproduce in the lab. But now, Duke University researchers say they've created an experimental gel that's the first to match the strength and durability of the real thing.

The material may look like a distant cousin of Jell-O -- which it is -- but it's incredibly strong. It's 60% water, but a single quarter-sized disc can bear the weight of a 100-pound kettlebell without tearing or losing its shape.

Its developers say it's the first hydrogel -- materials made of water-absorbing polymers -- capable of withstanding tugging and heavy loads as well as human cartilage, without wearing out over time.

Led by Duke chemistry and materials scientists Ben Wiley and Ken Gall, the research could one day offer people with knee troubles a replacement for damaged cartilage, and an alternative to the 600,000 knee replacement surgeries performed in the U.S. each year.

A smooth rubbery tissue that covers the ends of bones and enables them to glide smoothly against each other, cartilage helps absorb a huge amount of force with every step -- typically between two and three times your body weight.

However, cartilage also has limited ability to heal and repair itself. Once worn by age, overuse or trauma it's difficult to treat, said Gall, a professor of mechanical engineering and materials science at Duke.

For patients who want to avoid or postpone a knee replacement that may only last 20 years, artificial cartilage can help. Hydrogels have been explored for use as a cartilage substitute since the 1970s and are used in soft contact lenses and disposable diapers. Researchers are attracted to these materials because of their slippery, shock-absorbing properties and because they don't harm nearby cells. But until now they've proven too weak to be used in load-bearing joints like the knee.

The Duke team set out to change that. "We set out to make the first hydrogel that has the mechanical properties of cartilage," said Wiley, a chemistry professor at Duke.

The new hydrogel consists of two intertwined polymer networks: one made of stretchy spaghetti-like strands and the other more rigid and basketlike, with negative charges along their length. These are reinforced with a third ingredient, a meshwork of cellulose fibers.

When the gel is stretched, the cellulose fibers resist pulling and help hold the material together. And when it is squeezed, the negative charges along the rigid polymer chains repel each other and stick to water, helping it spring back to its original shape.

"Only this combination of all three components is both flexible and stiff and therefore strong," said co-author Feichen Yang, who earned a chemistry PhD in Wiley's lab.

When the researchers compared the resulting material to other hydrogels, theirs was the only one that was as strong as cartilage under both squishing and stretching.

In one experiment, the team subjected it to 100,000 cycles of repeat pulling, and the material held up just as well as porous titanium used for bone implants, "which exceeded our initial expectations," said co-author William Koshut, a PhD student in the Gall lab.

They also rubbed the new material against natural cartilage a million times. They found that its smooth, slippery self-lubricating surface is as wear-resistant as the real thing and four times more wear-resistant than synthetic cartilage implants currently FDA-approved for use in the big toe.

Moving the material from the lab to the clinic would take another three years at least, Wiley said. Initial safety tests suggest the material is nontoxic to lab-grown cells. The next step is to design an implant that they can test in sheep.

But the team says eventually the research could offer new options for people with knee pain, and get them back to doing the things they love without the long recovery times and limited lifetime associated with cartilage repair or knee replacement surgery.
-end-
This work was supported by Sparta Biomedical, a Paul M. Gross Fellowship, a Marcus Hobbes Fellowship, and the Shared Materials Instrumentation Facility at Duke.

CITATION: "A Synthetic Hydrogel Composite with the Mechanical Behavior and Durability of Cartilage," Feichen Yang, Jiacheng Zhao, William J. Koshut, John Watt, Jonathan Riboh, Ken Gall, Benjamin J. Wiley. Advanced Functional Materials, June 26, 2020. DOI: 10.1002/adfm.202003451

Duke University

Related Knee Replacement Articles:

Osteoarthritis: Conservative therapy delays need for knee and hip joint replacement surgery
With implementation of conservative treatment methods like physiotherapy and individually tailored, adjusted exercises, quality of osteoarthritis care can improve and patients can delay the need for an artificial hip or knee joint.
Changes in opioid use after hip, knee replacement
Researchers looked at changes in opioid prescribing rates and level of pain control in patients who had hip or knee replacement in the U.S. from 2014 to 2017.
Knee replacement timing is all wrong for most patients
The timing of knee replacement surgery is critical to optimize its benefit.
Study: 'Pre-habilitation' by peer coaches before knee replacement may improve outcomes
HSS researchers launched a study to see if a 'pre-habilitation'' program - counseling by a peer coach who has already had knee replacement - could empower and inform patients scheduled for the surgery and lead to better outcomes.
Study finds racial variation in post-op care after knee replacement surgery
A large study analyzing 107,000 knee replacement surgeries found that African Americans were significantly more likely than white patients to be discharged to an inpatient rehabilitation or skilled nursing facility rather than home care after the procedure.
Race and poverty not risk factors for total knee replacement revision or failure
In a new study published in Arthritis Care & Research, HSS investigators found race and poverty are not risk factors for total knee replacement revision or failure at a high-volume orthopedic hospital.
Increased use of partial knee replacement could save the NHS £30 million per year
New research from a randomised clinical trial published today in The Lancet and funded by the National Institute for Health Research (NIHR) shows that partial knee replacements (PKR) are as good as total knee replacements (TKR), whilst being more cost effective.
Low income is a risk factor for 'catastrophic' amputation after knee joint replacement
Above-knee amputation (AKA) is a rare but severe complication of deep infection after knee replacement surgery.
Study reveals hip and knee replacement performance in England and Wales
The performance of different prosthetic implant combinations used in patients undergoing hip and knee replacements in England and Wales over the last 14 years have, for the first time, been directly compared in two new studies.
Smart, self-powered knee implants could reduce number of knee replacement surgeries
Smart knee implants may soon be a reality thanks to research conducted by a team including faculty at Binghamton University, State University of New York.
More Knee Replacement News and Knee Replacement Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.