Radioactive scorpion venom for fighting cancer

June 27, 2006

Providence, Rhode Island--Health physicists are establishing safe procedures for a promising experimental brain-cancer therapy which uses a radioactive version of a protein found in scorpion venom. For many, this will conjure images of Spiderman's nemesis, the Scorpion. The purpose of this work is not science fiction, but rather to help to develop a promising new therapy for brain cancer. The venom of the yellow Israeli scorpion preferentially attaches to the cells of a type of essentially incurable brain cancers known as gliomas. Responding to this urgent problem, scientists at the Transmolecular Corporation in Cambridge, Massachusetts created a radioactive version of this scorpion venom. Called TM-601, it contains an artificial version of the venom protein, attached to a radioactive substance called iodine-131 (I-131). When it enters the bloodstream, the compound attaches to the glioma cells, then the I-131 releases radiation that kills the cell.

This compound has enabled an experimental treatment for high-grade gliomas, found in 17,000 people in the US every year and usually causing death in the first year of diagnosis. Patients would simply be injected with the compound in an outpatient procedure, without needing chemotherapy or traditional radiotherapy. The first, early human trials of the venom therapy showed promising signs for treating the tumor and prolonging survival rates for patients.

At the Health Physics Society meeting this week in Providence, Rhode Island, Alan M. Jackson of the Henry Ford Health System in Detroit will report that he and his colleagues recently established safe procedures for the therapy, currently in the second sequence of phase-II human trials, which involve higher doses of radiation than the earliest trials.

"The health physicist has the duty to ensure to ensure that these therapies are conducted both legally and safely," Jackson says. "Obviously, a key objective is to bring these patients home and to ensure that their loved ones and the environment are properly protected."

In the trials, one group of patients received the therapy three times over three weeks, while the other group received the therapy 6 times over 6 weeks. Each group received the same dose of radioactive iodine per week, 40 millicuries (mCi). According to Jackson, this is not tremendously high compared to a thyroid cancer treatment, in which patients receive up to 200 mCi in a single treatment.

As Jackson discovered, the TM-601 that does not bind to cells in the body is rapidly excreted in the urine. "Other tissues will receive some dose," he says, "but the vast majority of the dose is delivered to the cancer cells." To prevent the radioactive compound from being absorbed by the thyroid, which has a voracious appetite for iodine, the patients were given large amounts of non-radioactive iodine prior to the therapy to block the thyroid uptake of I-131.

When the patient returns home several hours after the procedure, there are radiation doses to any family members at home due to the presence of radiation in the patient's body. Such radiation exposures to family members, Jackson found, are low and comparable to those from a family member receiving standard thyroid cancer therapy.

Jackson is encouraged by the safety of this procedure and its potential to help patients with brain gliomas. A recent study of the earlier phase II trials showed that patients receiving up to 40 mCi of weekly dose did not show evidence of any adverse reactions attributable to the radiation. The second-sequence phase II trial at Henry Ford involves 3 patients, with a total of 54 patients across the US currently in investigational trials for the therapy.
-end-
ABOUT THE HEALTH PHYSICS SOCIETY

The Health Physics Society consists of nearly 6,000 radiation safety professionals whose activities include ensuring safe and beneficial uses of radiation and radioactive materials, assisting in the development of standards and regulations, and communicating radiation safety information.

The Society is a nonprofit organization formed in 1956. Its primary mission is excellence in the science and practice of radiation safety. The Society has members in approximately 70 countries, and has established nearly 50 chapters and 10 student branches. Visit www.hps.org for more information.

Links:

HPS abstract on meeting paper: http://birenheide.com/hps/2006program/singlesession.php3?sessid=WAM-B&order=94#94

Author's lay-language description of meeting paper:
http://hps.org/newsandevents/meetings/pressroom/venom_therapy.pdf

Transmolecular Press Release on Venom Therapy- http://www.transmolecular.com/pdfs/FiveashPR_ASCOVersion.pdf

Health Physics Society

Related Cancer Cells Articles from Brightsurf:

Cancer researchers train white blood cells to attacks tumor cells
Scientists at the National Center for Tumor Diseases Dresden (NCT/UCC) and Dresden University Medicine, together with an international team of researchers, were able to demonstrate that certain white blood cells, so-called neutrophil granulocytes, can potentially - after completing a special training program -- be utilized for the treatment of tumors.

New way to target some rapidly dividing cancer cells, leaving healthy cells unharmed
Scientists at Johns Hopkins Medicine and the University of Oxford say they have found a new way to kill some multiplying human breast cancer cells by selectively attacking the core of their cell division machinery.

Breast cancer cells use message-carrying vesicles to send oncogenic stimuli to normal cells
According to a Wistar study, breast cancer cells starved for oxygen send out messages that induce oncogenic changes in surrounding normal epithelial cells.

Breast cancer cells turn killer immune cells into allies
Researchers at Johns Hopkins University School of Medicine have discovered that breast cancer cells can alter the function of immune cells known as Natural killer (NK) cells so that instead of killing the cancer cells, they facilitate their spread to other parts of the body.

Breast cancer cells can reprogram immune cells to assist in metastasis
Johns Hopkins Kimmel Cancer Center investigators report they have uncovered a new mechanism by which invasive breast cancer cells evade the immune system to metastasize, or spread, to other areas of the body.

Engineered immune cells recognize, attack human and mouse solid-tumor cancer cells
CAR-T therapy has been used successfully in patients with blood cancers such as lymphoma and leukemia.

Drug that keeps surface receptors on cancer cells makes them more visible to immune cells
A drug that is already clinically available for the treatment of nausea and psychosis, called prochlorperazine (PCZ), inhibits the internalization of receptors on the surface of tumor cells, thereby increasing the ability of anticancer antibodies to bind to the receptors and mount more effective immune responses.

Engineered bone marrow cells slow growth of prostate and pancreatic cancer cells
In experiments with mice, researchers at the Johns Hopkins Kimmel Cancer Center say they have slowed the growth of transplanted human prostate and pancreatic cancer cells by introducing bone marrow cells with a specific gene deletion to induce a novel immune response.

First phase i clinical trial of CRISPR-edited cells for cancer shows cells safe and durable
Following the first US test of CRISPR gene editing in patients with advanced cancer, researchers report these patients experienced no negative side effects and that the engineered T cells persisted in their bodies -- for months.

Zika virus' key into brain cells ID'd, leveraged to block infection and kill cancer cells
Two different UC San Diego research teams identified the same molecule -- αvβ5 integrin -- as Zika virus' key to brain cell entry.

Read More: Cancer Cells News and Cancer Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.