U of M study examines kidney stone prevention in astronauts

June 27, 2006

As the space shuttle Discovery prepares to launch on July 1, researchers at the University of Minnesota have identified a way for astronauts to reduce their risk of developing kidney stones while in space.

Astronauts lose calcium in their bones and strength in their muscles while in space because of the zero-gravity environment. This calcium can end up in their kidneys, putting them at risk for developing kidney stones.

At least 14 American crew members have developed kidney stones in the last 5 years, and as missions become longer, the number is likely to grow. While astronauts have exercised in space to attempt to combat bone loss, the lack of gravity makes it difficult to achieve enough resistance to maintain their pre-flight fitness levels.

"This becomes a real health concern, as the time astronauts spend in space and living in the space station is extended," said Manoj Monga, M.D., professor of urologic surgery and lead investigator. The study will be published in the July 2006 print issue of the Journal of Urology and is available online now.

Kidney stones are mineral deposits in the kidneys that can travel through the urinary tract, causing intense pain. One of the most common types of kidney stones is caused by the buildup of calcium oxalate.

Researchers studied the effects of exercise in pairs of identical twins, since a portion of a person's risk for developing kidney stones is genetic. The study participants had no history of kidney stones and were placed on standardized diets.

The twins were put on bed rest on a tilted bed that positioned their head lower than their feet to simulate low gravity for 30 days. One twin per pair was randomly selected to exercise (while still reclining) in a chamber that put negative pressure, or resistance on their lower body, and the other twin served as a non-exercising control. The pressure in the chamber was roughly equivalent to what a person would experience running on Earth.

Monga found that the non-exercising study participants had higher levels of urinary calcium than the exercising group, and thus had a greater risk of developing kidney stones. Additionally, many astronauts do not drink enough water while in space, so their urine output is lower, and the food they consume is higher in sodium, which also increases the risk for kidney stone development.

"In combination with hydration therapy, exercise in a machine that simulates gravity could reduce the astronaut's risk of developing kidney stones, a condition that could be particularly painful and lead to an aborted mission," Monga said.
-end-
The research was funded by the National Aeronautical and Space Administration and the National Institutes of Health.

University of Minnesota

Related Calcium Articles from Brightsurf:

A new strategy for the greener use of calcium carbide
Computational chemists from St Petersburg University and the Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences have developed a new strategy for using calcium acetylide in the synthesis of organic compounds.

New link between calcium and cardiolipin in heart defects
To function properly, the heart needs energy from cells' powerhouses, the mitochondria.

'Give me the calcium!' Tulane virus takes over cellular calcium signaling to replicate
Researchers uncover the first piece of functional evidence suggesting that Tulane virus and human norovirus use viroporins to control cellular calcium signaling.

Carbon dots make calcium easier to track
Prof. DONG Wenfei's research group from the Suzhou Institute of Biomedical Engineering and Technology (SIBET) has developed a new type of fluorescent carbon dot that can effectively detect calcium levels in cells.

Calcium batteries: New electrolytes, enhanced properties
Calcium-based batteries promise to reach a high energy density at low manufacturing costs.

Chelated calcium benefits poinsettias
Cutting quality has an impact on postharvest durability during shipping and propagation of poinsettias.

New study uncovers the interaction of calcium channels
Korean researchers have identified the interactions of the combinants among calcium channel proteins that exist in nerve and heart cells.

Calcium-catalyzed reactions of element-H bonds
Calcium-catalyzed reactions of element-H bonds provide precise and efficient tools for hydrofunctionalization.

A bioengineered tattoo monitors blood calcium levels
Scientists have created a biomedical tattoo that becomes visible on the skin of mice in response to elevated levels of calcium in the blood.

The dinosaur menu, as revealed by calcium
By studying calcium in fossil remains in deposits in Morocco and Niger, researchers have been able to reconstruct the food chains of the past, thus explaining how so many predators could coexist in the dinosaurs' time.

Read More: Calcium News and Calcium Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.