Nav: Home

Controlled Colorado River flooding released stored greenhouse gases

June 27, 2016

The 2014 experimental controlled pulse of water to the Colorado River Delta has revealed an interesting twist on how large dry watercourses may respond to short-term flooding events: the release of stored greenhouse gases. This work is reported at the Goldschmidt conference in Yokohama, Japan.

As presenter Dr Thomas Bianchi said:

"We saw a rapid release of greenhouse gases (CH4 and CO2) from the riverbed sediments to the floodwaters. These gases were largely derived from carbon which had been stored in the dry riverbed, perhaps for decades".

Radiocarbon measurements indicate a resuspension and dissolution of trapped carbon in the riverbed that was released into the flood waters. The dissolved inorganic carbon (DIC, e.g., carbon dioxide, carbonic acid, bicarbonate, and carbonate) was found to be aged (often more than 800 years old) which would suggest that trapped CO2/IC would have been dissolved and released rapidly into the river water when flooded.

Thomas Bianchi continued, "This shows that more work is needed to better understand the more unpredictable consequences of floods and droughts on aquatic ecosystems, particularly in the face of global climate change".

The Colorado River - which carved out the Grand Canyon - is now contained by the Hoover and other dams. It is perhaps North America's most iconic waterway. Increasing use of water from the Colorado in both the US and Mexico has meant that the Colorado Delta in Mexico, where the river runs into the Gulf of California has largely dried up. The Delta wetlands of the Colorado are now only around 1/20th of their size prior to the Hoover Dam construction.

In 2014, a major 8-week experiment* released 130 million cubic metres of water from the Morelos dam (on the border with Mexico and the USA) causing a rise in river levels as far down as the delta. The pulse of water, concentrated around 27-29 March 2014, was aimed at bringing water to delta, which has been starved of water for decades. Scientists were able to look at the before and after conditions, to evaluate how future water releases might affect agricultural crops and natural plant and animal life of the lower delta.

The results of this very brief controlled flooding event showed that some of the carbon stored in the riverbed was rapidly released into the floodwaters, which although not directly measured, also likely allowed for the release of these greenhouse gases to the atmosphere. This indicates the need for a long-term approach, not just for the Colorado, but many other areas in the world that are currently experiencing human-induced changes in water flow.

According to Dr Bianchi (University of Florida):

"Based on our findings, we suggest that stored carbon in riverbeds (e.g., greenhouse gases) is more likely to be released in a more variable climate, with floods and drought, than under more stable conditions in arid and semi-arid regions. As human needs for water resources continues to increase, the drying and rewetting of once natural river deltas may fundamentally alter the processing and storage of carbon.

There is a lot still to understand. For example, we don't know how the duration of the wet and dry periods might affect the gas release, or whether maintaining minimum water flow levels might help.

Another factor we need to consider is whether the restored water supply would promote the growth of native plant species in the lower delta. These marsh-like plant communities capture atmospheric carbon and have the potential to store such greenhouse gases in their soils for long periods of time. There are other potential benefits too, for example the restoration of an eroding delta which would lead to coastal stability that should lead to benefits to local fisheries. Resolving these uncertainties is critical for assessing the role of inland waterways on global carbon budgets, identifying potential feedback loops under a changing climate, and planning future flow restoration events.

In practical terms, this means that restoring the river delta is not just a case of opening a tap every now and then: both the US and Mexico need to make a long-term commitment to maintain this complex delicate ecosystem, particularly in a region with such low rainfall. But we think that aiming for restoration is clearly the right thing to do".

Commenting, Professor Elizabeth A. Canuel (Virginia Institute of Marine Science), said:

"This presentation reports an unexpected finding that a short-term controlled flooding event on the Colorado River resulted in the release of greenhouse gases (CH4 and CO2) from the newly wetted riverbed sediments. Generally, production of greenhouse gases (GHG) generated from aerobic and anaerobic respiration of organic matter is thought to be higher in dry soils, rather than wet soils. However, as this preliminary study shows, dry river sections can become "hot spots" of biogeochemical transfer and transformation when organic matter and nutrients accumulated in the sediments are "activated" during rewetting phases and first-pulse events such as this controlled flooding event.

Overall, this study provides new insights about biogeochemical responses to flood events. It also has management implications because it shows that release of GHG could be a potential unintended consequence of controlled flood events that will need to be considered against the benefits of these events in terms of restoration and/or other ecological services". (NOTE: a longer comment is available from the press officer).
-end-
This work is supported in part by a grant from the National Science Foundation, Hydrological Sciences Program.

*For background see: http://www.nature.com/news/water-returns-to-arid-colorado-river-delta-1.14897

Goldschmidt Conference

Related Greenhouse Gases Articles:

Making microbes that transform greenhouse gases
A new technique will help not only reduce greenhouse gas emissions, but the potential to reduce the overall dependence on petroleum.
Reducing greenhouse gases while balancing demand for meat
Humans' love for meat could be hurting the planet. Many of the steps involved in the meat supply chain result in greenhouse gas emissions.
White people's eating habits produce most greenhouse gases
White individuals disproportionately affect the environment through their eating habits by eating more foods that require more water and release more greenhouse gases through their production compared to foods black and Latinx individuals eat, according to a new report published in the Journal of Industrial Ecology.
Degrading plastics revealed as source of greenhouse gases
Researchers from the University of Hawai'i at Mānoa School of Ocean and Earth Science and Technology (SOEST) discovered that several greenhouse gases are emitted as common plastics degrade in the environment.
What natural greenhouse gases from wetlands and permafrosts mean for Paris Agreement goals
Global fossil fuel emissions would have to be reduced by as much as 20 percent more than previous estimates to achieve the Paris Agreement targets, because of natural greenhouse gas emissions from wetlands and permafrost, new research has found.
More Greenhouse Gases News and Greenhouse Gases Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...