Nav: Home

Four newly identified genes could improve rice

June 27, 2016

A Japanese research team have applied a method used in human genetic analysis to rice and rapidly discovered four new genes that are potentially significant for agriculture. These findings could influence crop breeding and help combat food shortages caused by a growing population. The paper was published on June 21, 2016 (Japan Standard Time) in the online edition of Nature Genetics.

Selective crop improvement based on plant genetics and breeding is essential to support the world's growing population. In order to efficiently breed new crop varieties it is necessary to rapidly identify the genes related to high crop yields and analyze what makes them special.

Until now the genetic analysis of crops has mainly been based on quantitative trait loci (QTL) analysis, but this method requires time to develop experimental populations. Another method known as genome-wide association studies (GWAS), frequently used to analyze human genes, uses data from many extant individuals to analyze genes in a short time span. Various plant species have also been analyzed using this method, but there have been very few cases of successful analysis.

In order to produce results using GWAS analysis, the research team limited their targets to 176 Japanese rice cultivars, including 86 cultivars used in Japanese-sake brewing that Kobe University has maintained over many years. Using next-generation sequencing, the group determined the whole sequence of each cultivar, and discovered a total of 493,881 of the DNA-based polymorphisms.

Based on these results, the team carried out GWAS analysis on each trait and rapidly identified four genes within a group of 12 rice plant chromosomes. Chromosome 1 contains a gene that decides rice flowering date; chromosome 4 contains a gene that influences panicle number produced, leaf breadth, and rice grain number; a chromosome 8 gene affects awn length (a factor which influences harvesting); and a gene within chromosome 11 decides flowering date, plant height, and panicle length.

Genetic analysis of plants based on GWAS has been carried out many times but with limited success. The success of this experiment could aid the discovery of genes in other plant and animal species and potentially contribute towards solving food shortages caused by population growth. The Japanese rice varieties maintained by Kobe University and used in this research could be used as valuable genetic resources to help identify other genes and breed new crop species.
-end-
Research team members for this study included Associate Professor Yamasaki Masanori (Kobe University Graduate School of Agricultural Science Food Resources Education and Research Center), Professor Matsuoka Makoto (Nagoya University Bioscience and Biotechnology Center), Yano Kenji (Nagoya University Bioscience and Biotechnology Center, currently research associate at the University of Tokyo Graduate School of Agricultural and Life Sciences), and Yamamoto Eiji (researcher at the NARO Institute of Vegetable and Tea Science).

Kobe University

Related Chromosome Articles:

How cells combat chromosome imbalance
MIT biologists have now identified a mechanism that the immune system uses to eliminate genetically imbalanced cells from the body.
For keeping X chromosomes active, chromosome 19 marks the spot
After nearly 40 years of searching, Johns Hopkins researchers report they have identified a part of the human genome that appears to block an RNA responsible for keeping only a single X chromosome active when new female embryos are formed, effectively allowing for the generally lethal activation of more than one X chromosome during development.
Discovery of a novel chromosome segregation mechanism during cell division
When cells divide, chromosomes need to be evenly segregated. This equal distribution is important to accurately pass genetic information to the next generation.
New steps in the meiosis chromosome dance
Where would we be without meiosis and recombination? A new paper published online Jan.
How well do we understand the relation between incorrect chromosome number & cancer?
Researchers at CSHL and MIT report surprising results of experiments intended to explore the consequences of having too many or too few chromosomes, a phenomenon that biologists call aneuploidy.
Understanding X-chromosome silencing in humans
Researchers have discovered new insights into how one of the two X-chromosomes is silenced during the development of female human embryos and also in lab-grown stem cells.
Only half of a chromosome is DNA, 3-D imaging study shows
DNA makes up only half of the material inside chromosomes -- far less than was previously thought -- a study has revealed.
Ultrastructure of a condensed chromosome-like structure in a cyanobacterium
Researchers have discovered that the photosynthetic cyanobacterium Synechococcus elongates PCC 7942 shows eukaryotic condensed chromosome-like DNA compaction prior to cell division if cultivated under rigorous light/dark cycles and have successfully visualized the ultrastructure of the compacted DNA by means of high-voltage cryo-electron tomography.
X chromosome: The structure makes the difference
In male cells of the fruit fly Drosophila, the X chromosome is twice as active as in female cells.
Loss of Y chromosome is a risk factor for Alzheimer's disease
The loss of the Y chromosome in batches of cells over time continues to develop as one biological explanation for why men, on average, live shorter lives than women.

Related Chromosome Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".