Nav: Home

Pre-synaptic cadherin/catenin complexes stablize post-synaptic spines in vivo

June 27, 2017

Synapses are fundamental building blocks of neural circuits. Synapse formation requires complex regulation involving cell adhesion molecules, secreted molecules, transcription factors and so forth. For cell adhesion molecules, a critical unanswered question is whether pre- and post-synaptic partners contribute equally to synaptogenesis, or whether one side is predominant in inducing functional synapse formation and in stabilizing nascent synapses.

A recent study conducted by Dr. YU Xiang's lab at the Institute of Neuroscience of the Chinese Academy of Sciences uncovered an asymmetric role for symmetric cadherin/catenin cell adhesion complexes in functional synapse formation in the neocortex. Pre-synaptic β-catenin is predominant during functional synapse formation and mediates dendritic spine stabilization through N-cadherin-dependent anterograde trans-synaptic signaling. The effect of the cadherin/catenin complexes requires p140Cap, a novel β-catenin interacting partner. The results of this study were published in Neuron.

Using Nex-Cre mice to conditionally knockout or overexpress β-catenin in all neocortical excitatory neurons, and recording from layer 2/3 (L2/3) pyramidal neurons of the mouse barrel cortex, researchers found that β-catenin bi-directionally regulated the frequency of miniature excitatory postsynaptic currents. β-catenin overexpression promoted spinogenesis in L2/3 pyramidal neurons. Using live imaging, the researchers showed that β-catenin is required for spine stabilization and not de novo formation.

To address the question of whether the pre- or post-synaptic partner is predominant in inducing or stabilizing nascent synapses, they used distinct transgenic mice and viral injections to specifically manipulate β-catenin in post-synaptic (CaMKCreER and sparse AAV-GFP-β-cat* injection) or pre-synaptic (Scnn1a-Tg3-Cre and dense AAV-GFP-β-cat* injection) neurons, and found that β-catenin gain-of-function in pre-synaptic neurons, but not post-synaptic neurons, significantly promoted excitatory synaptic transmission and spine maturation of L2/3 pyramidal neurons.

This surprising result led researchers to test changes in the pre-synaptic loci. Using Ai34D mice that conditionally expressed synaptophysin-tdTomato, a pre-synaptic vesicle-related protein, they found that β-catenin promotes maturation of synaptophysinpuncta in pre-synaptic loci. Moreover, β-catenin bi-directionally regulated the pre-synaptic release probability of glutamatergic vesicles as measured by electrophysiological recordings. Reported β-catenin binding partners could not mediate the above-described effects.

Through co-immunoprecipitation and mass spectrometry experiments, researchers identified p140Cap, a protein known to regulate exocytosis, as a novel binding partner of β-catenin. They showed the presence of cadherin/catenin/p140Cap complexes. Further experiments demonstrated that pre-synaptic expression of p140Cap is required for excitatory synaptic transmission and spine stabilization.

These results uncovered an asymmetric role for the cadherin/catenin complex in neocortical circuit wiring -contrary to the earlier assumption of symmetry. Whether these findings mean generally a predominant role for the pre-synaptic site in functional synapse formation remains to be determined in future studies. It would also be interesting to explore whether this mechanism extends to other neural circuits.

The formation and maturation of synapses and spines are fundamental to proper neural circuit wiring and function. A better understanding of the molecular mechanisms underlying these processes is not only important for basic neuroscience, but is also of great relevance to understanding neurodevelopmental disorders characterized by synapse dysfunction, such as autism spectrum disorder.
-end-


Chinese Academy of Sciences Headquarters

Related Neurons Articles:

How do we get so many different types of neurons in our brain?
SMU (Southern Methodist University) researchers have discovered another layer of complexity in gene expression, which could help explain how we're able to have so many billions of neurons in our brain.
These neurons affect how much you do, or don't, want to eat
University of Arizona researchers have identified a network of neurons that coordinate with other brain regions to influence eating behaviors.
Mood neurons mature during adolescence
Researchers have discovered a mysterious group of neurons in the amygdala -- a key center for emotional processing in the brain -- that stay in an immature, prenatal developmental state throughout childhood.
Astrocytes protect neurons from toxic buildup
Neurons off-load toxic by-products to astrocytes, which process and recycle them.
Connecting neurons in the brain
Leuven researchers uncover new mechanisms of brain development that determine when, where and how strongly distinct brain cells interconnect.
The salt-craving neurons
Pass the potato chips, please! New research discovers neural circuits that regulate craving and satiation for salty tastes.
When neurons are out of shape, antidepressants may not work
Selective serotonin reuptake inhibitors (SSRIs) are the most commonly prescribed medication for major depressive disorder (MDD), yet scientists still do not understand why the treatment does not work in nearly thirty percent of patients with MDD.
Losing neurons can sometimes not be that bad
Current thinking about Alzheimer's disease is that neuronal cell death in the brain is to blame for the cognitive havoc caused by the disease.
Neurons that fire together, don't always wire together
As the adage goes 'neurons that fire together, wire together,' but a new paper published today in Neuron demonstrates that, in addition to response similarity, projection target also constrains local connectivity.
Scientists accidentally reprogram mature mouse GABA neurons into dopaminergic-like neurons
Attempting to make dopamine-producing neurons out of glial cells in mouse brains, a group of researchers instead converted mature inhibitory neurons into dopaminergic cells.
More Neurons News and Neurons Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.