X-ray photoelectron spectroscopy under real ambient pressure conditions

June 27, 2017

Researchers at Institute for Molecular Science (IMS), Innovation Research Center for Fuel Cells, University of Electro-Communications, Research Center for Materials Science, Nagoya University, and JASRI (Japan Synchrotron Radiation Research Institute), have improved an ambient-pressure photoelectron spectroscopy instrument using hard X-rays*1 produced at SPring-8*2 and succeeded in photoelectron spectrometry*3 under real atmospheric pressure for the first time in the world. Their achievements has been published online in the "Applied Physics Express."

Conventional photoelectron spectroscopy can only measure samples under high vacuum, while many catalytic reactions occur under atmospheric pressure. The discrepancy between the findings obtained by experiments under high vacuum and the actual reaction mechanism under atmospheric pressure, "pressure gap," has been an issue. In recent years, in order to fill this gap, an apparatus called "ambient pressure photoelectron spectroscopy" has been developed that enables measurement under gas atmosphere. However, the upper-pressure limit of operation in a general ambient pressure photoelectron spectrometer is approximately 5,000 Pa. Even the apparatus with a currently reported world's highest performance has a limit of 15,000 Pa (approx. 0.15 atm), which is about 1/7 the atmospheric pressure (approx. 100,000 Pa). Therefore, various research groups in the world have been working on the development of photoelectron spectroscopy that operate under higher gas pressure.

A problem upon measurement using ambient pressure photoelectron spectrometer is "energy decay" of the photoelectrons emitted from the sample exposed to light, which is due to scattering caused by gas. This limits the upper-pressure of the measurement. "We made two improvements," explains Yasumasa Takagi, an assistant professor of IMS. "First, we used hard X-rays that has higher energy compared to soft X-rays and boosted kinetic energy of the photoelectrons. Next, we created an extremely tiny aperture of 30 μm in diameter (figure left), which is a port that accepts photoelectrons into the spectrometer. This enabled to shorten the distance between the sample and the aperture, i.e. the distance of photoelectron traveling through gas has shortened." Thus, using gold thin film as a sample, the research group succeeded in photoelectron spectroscopy under real atmospheric pressure, for the first time in the world (figure right).

Professor Toshihiko Yokoyama (IMS) has a vision of possibilities for future applications of the novel photoelectron spectrometer. "Our apparatus achieved photoelectron spectroscopy under real atmospheric pressure, which greatly broadened its range of application. Reactions between solid and gas such as catalytic reactions and electrode reactions in fuel cells can be directly examined under atmospheric pressure. It can be also applied to biological samples that are fragile under high vacuum. In the future, photoelectron spectroscopy will be used for state analysis in various research areas."
-end-
This research was supported by the Grants-in-Aid for Scientific Research (KAKENHI) from the Japan Society for the Promotion of Science and by the Polymer Electrolyte Fuel Cell Program from the New Energy and Industrial Technology Development Organization (NEDO) Project.

*1 Soft X-rays / hard X-rays

Electromagnetic waves in the wavelength range of 1 pm to 10 nm are called X-rays. Those of long wavelengths are called soft X-rays and those of short wavelength are called hard X-rays. The shorter the wavelength, the higher the energy of the electromagnetic waves.

*2 SPring-8

SPring-8 is the world's largest synchrotron radiation facility, located in Harima Science Park, Hyogo Prefecture, Japan. It is managed by RIKEN and operated by JASRI. Synchrotron radiation refers to narrow and powerful electromagnetic waves that are produced when electrons are accelerated to nearly the speed of light and their traveling direction is bent by electromagnets. Synchrotron radiation from SPring-8 is widely used for nanotechnological, biotechnological, and industrial studies.

*3 Photoelectron spectroscopy

Method to observe conditions of a material by measuring the energy of photoelectrons emitted owing to the photoelectric effect when the material is irradiated with electromagnetic waves.

National Institutes of Natural Sciences

Related Fuel Cells Articles from Brightsurf:

Fuel cells for hydrogen vehicles are becoming longer lasting
An international research team led by the University of Bern has succeeded in developing an electrocatalyst for hydrogen fuel cells which, in contrast to the catalysts commonly used today, does not require a carbon carrier and is therefore much more stable.

Scientists develop new material for longer-lasting fuel cells
New research suggests that graphene -- made in a specific way -- could be used to make more durable hydrogen fuel cells for cars

AI could help improve performance of lithium-ion batteries and fuel cells
Imperial College London researchers have demonstrated how machine learning could help design lithium-ion batteries and fuel cells with better performance.

Engineers develop new fuel cells with twice the operating voltage as hydrogen
Engineers at the McKelvey School of Engineering at Washington University in St.

Iodide salts stabilise biocatalysts for fuel cells
Contrary to theoretical predictions, oxygen inactivates biocatalysts for energy conversion within a short time, even under a protective film.

Instant hydrogen production for powering fuel cells
Researchers from the Chinese Academy of Sciences, Beijing and Tsinghua University, Beijing investigate real-time, on-demand hydrogen generation for use in fuel cells, which are a quiet and clean form of energy.

Ammonia for fuel cells
Researchers at the University of Delaware have identified ammonia as a source for engineering fuel cells that can provide a cheap and powerful source for fueling cars, trucks and buses with a reduced carbon footprint.

Microorganisms build the best fuel efficient hydrogen cells
With billions of years of practice, nature has created the most energy efficient machines.

Atomically precise models improve understanding of fuel cells
Simulations from researchers in Japan provide new insights into the reactions occurring in solid-oxide fuel cells by using realistic atomic-scale models of the electrode active site based on microscope observations instead of the simplified and idealized atomic structures employed in previous studies.

New core-shell catalyst for ethanol fuel cells
Scientists at Brookhaven Lab and the University of Arkansas have developed a highly efficient catalyst for extracting electrical energy from ethanol, an easy-to-store liquid fuel that can be generated from renewable resources.

Read More: Fuel Cells News and Fuel Cells Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.