Nav: Home

Ahead of the curve

June 27, 2017

3D printers have been around since the 1980s, but we are still far from maximizing their potential. One active area of research and development is "self-actuating" objects: flat materials that transform themselves through material forces into the desired 3D object. Previously, however, the range of objects was limited to those with sharp edges and little, if any, curvature, and the transformation methods were based primarily on folding or processes that could not be controlled very precisely (e.g. chemical reactions or inflation). Now, for the first time, a group of current and former IST Austria computer scientists have made it possible to create self-actuating, smooth, free-form objects. In so doing, they developed both an ingenious material design and a new method of self-transformation--they call the fruits of their innovation "CurveUps". Moreover, the team, which consists of Ruslan Guseinov, Eder Miguel, and Bernd Bickel, developed the computational tools to take a user-provided 3D model and automatically create a 2D flattened template that, upon release, transforms into the original 3D version.

The goal of the project was ambitious in a number of ways. First, it is very challenging to obtain a final 3D object that is mechanically stable. Moreover, the team had to develop a controllable mechanism to accomplish this. "I experimented with so many different materials and methods before coming up with our current design," says first author Ruslan Guseinov. CurveUps are made up of tiny tiles sandwiched between pre-stretched latex layers. During the transformation process, the tension in the latex pulls the tiles together joining them into a continuous shell.

An innovative design and transformation method were only part of the team's contribution, however. With these ideas in hand, the team focused on developing tools to create the 2D templates for printing. In particular, their program takes a user-supplied 3D form, and automatically generates a 2D tile layout, including the orientation, location and shape of each tile and connecting pins. However, as even small models will have hundreds or thousands of individual tiles, this represents an optimization problem of tremendous proportions--infeasible, on any personal computer. To get around this, the group implemented a two-step optimization procedure, which first gives an approximate solution, then performs local refinements before producing a final template. The entire procedure, from 3D model to a CurveUp, can be viewed online in the video linked below.

CurveUps are not just technically and mathematically impressive, they represent an important breakthrough in terms of 3D printing. "Our research is a step toward the development of new fabrication technologies: there have been many advances in flat fabrication, for instance in electronics, that have previously been limited to 2D shapes," Ruslan Guseinov explains. "With CurveUps, we make it possible to produce 3D objects empowered with these same technologies, pushing the limits of digital manufacturing far beyond the current state."

Bernd Bickel agrees: "There is a great deal of knowledge in terms of 2D printing technology, and we connect these capabilities with those of 3D objects. This is an extremely exciting area of 3D printing research, and the group is actively working to expand the possibilities even further."

Ruslan Guseinov is a 3rd-year PhD student in the Computer Graphics and Digital Fabrication group at IST Austria. Eder Miguel, previously a postdoc in the group, is now a postdoc at Rey Juan Carlos University. The group is led by Assistant Professor Bernd Bickel, who joined IST Austria in 2015. The paper describing the work will be presented at this year's SIGGRAPH in Los Angeles, California, one of the world's premier conferences on computer graphics and interactive techniques.
-end-
IST Austria

The Institute of Science and Technology (IST Austria) is a PhD granting research institution located in Klosterneuburg, 18 km from the center of Vienna, Austria. Inaugurated in 2009, the Institute is dedicated to basic research in the natural and mathematical sciences. IST Austria employs professors on a tenure-track system, postdoctoral fellows, and doctoral students at its international graduate school. While dedicated to the principle of curiosity-driven research, the Institute owns the rights to all scientific discoveries and is committed to promote their use. The first president of IST Austria is Thomas A. Henzinger, a leading computer scientist and former professor at the University of California in Berkeley, USA, and the EPFL in Lausanne, Switzerland. http://www.ist.ac.at

Link to production video: https://www.youtube.com/watch?v=OSo1HZFhVaU

Link to research: http://visualcomputing.ist.ac.at/publications/2017/CurveUp/

Institute of Science and Technology Austria

Related Research Articles:

More Research News and Research Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.