Nav: Home

Jellyfish fluorescence shines new light on DNA copying

June 27, 2017

Using these proteins, originally found in jellyfish to make them glow, the team where able to focus laser beams on the brightly lit proteins and track them inside a bacteria that normally lives inside the human gut.

This allowed scientists to watch the molecular machinery of DNA as it replicated inside a cell one molecule at a time. It revealed for the first time that only one component of this process, called DnaB helicase, remains stable - like a molecular anchor to the process.

In most cells, whether human or bacterial, a new cell is created after an existing cell divides in two. This means that a copy of the original sequence of genes coded in its DNA must be precisely copied and placed into the new cell.

This is thought to be a process that occurs slowly and methodically at set points in time. New research at the University of York, in collaboration with the University of Oxford and McGill University Canada, however, has now tracked this replication process in real-time and shown that it is far more dynamic than the textbooks suggest, occurring instead through a 'stuttering-like process' in short bursts.

Using these proteins, originally found in jellyfish to make them glow, the team where able to focus laser beams on the brightly lit proteins and track them inside a bacteria that normally lives inside the human gut.

This allowed scientists to watch the molecular machinery of DNA as it replicated inside a cell one molecule at a time. It revealed for the first time that only one component of this process, called DnaB helicase, remains stable - like a molecular anchor to the process.

In most cells, whether human or bacterial, a new cell is created after an existing cell divides in two. This means that a copy of the original sequence of genes coded in its DNA must be precisely copied and placed into the new cell.

This is thought to be a process that occurs slowly and methodically at set points in time. New research at the University of York, in collaboration with the University of Oxford and McGill University Canada, however, has now tracked this replication process in real-time and shown that it is far more dynamic than the textbooks suggest, occurring instead through a 'stuttering-like process' in short bursts.

The process of DNA replication is fundamental to all life and the way errors in the process are resolved is especially important to human health. Errors can give rise to forms of cancer and become more prevalent in an ageing population.

This work will help scientists not only understand more fully the basic building blocks of life but potentially also provides new insights into a range of health conditions as well as even shedding new light on how human ageing can give rise to diseases associated with errors in copying the DNA from cell to cell.

Research was conducted using the DNA of Escherichia coli cell, bacteria, but However, the next stage of this research will investigate the same process in more complex cells, ultimately including those from humans.
-end-
The research, 'Frequent exchange of DNA polymerase during bacterial chromosome replication', was supported by the BBSRC and is published in the journal, eLife

University of York

Related Bacteria Articles:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.
How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.
Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.
Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.
Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.
Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.
Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.
How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
More Bacteria News and Bacteria Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.