Nav: Home

Conducting shell for bacteria

June 27, 2017

Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes. A weak point is the dissatisfactory power density of the microbial cells. An unconventional solution is now presented by Singaporean and Chinese scientists: as reported in the journal Angewandte Chemie, they coated live, electroactive bacteria with a conducting polymer and obtained a high-performance anode for microbial fuel cells.

The history of microbial fuel cells goes back to the beginning of the 20th century when scientists connected bacteria cells with electrodes to generate electricity. The principle is that, if no oxygen is present, the bacteria's metabolism changes to produce protons and electrons instead of carbon dioxide and water. These electrons can be used for current generation in an electrochemical cell. Such microbial fuel cells are currently heavily investigated for sustainable energy production and, especially, wastewater treatment. Their weak point is the power density. Much of the electrochemical potential of the bacteria is wasted because they do not transmit their produced electrons easily to the electrode. To make them more conductive, Qichun Zhang from Nanyang Technological University, Singapore, and his colleagues explored the idea of wrapping bacteria in a shell of electron-conducting polymers. The challenge with this is that the coated bacteria must still be viable.

The scientists relied on the polymer polypyrrole. "The modification of bacterial cells with polypyrrole is anticipated to improve the electrical conductivity of bacterial cells without reducing their viability," the authors explained. Iron ions were employed as "the oxidative initiator to make pyrrole monomers polymerized on the [bacterium's] surface." The organism of choice was the proteobacterium Shewanella oneidensis, which is known for its metal toleration and both aerobic and anaerobic lifestyles. Still living and active, the coated bacteria were tested for biocurrent generation with a carbon anode. Compared to their unmodified counterparts, they indeed displayed a 23 times smaller resistance (which means, enhanced conductivity), a fivefold increase in electricity generation, and a 14 times higher maximum power density of the anode in a microbial fuel cell. And if the bacteria were fed with lactate, the authors observed a pronounced current, which did not happen when uncoated bacteria were used.

Zhang's approach is a remarkable solution to the conductivity problem of a microbial anode. The authors believe that this coating scheme of live bacteria may add a new dimension to the exploration of microbial fuel cells, as well as general research on cell-surface functionalization.
-end-
About the Author

Qichun Zhang is Associate Professor at Nanyang Technological University, Singapore and leads the Exotic Materials and Applications group. His research interests range from organic semiconductors to OLEDs and bio-imaging.

https://www.ntu.edu.sg/home/qczhang/

Wiley

Related Bacteria Articles:

Conducting shell for bacteria
Under anaerobic conditions, certain bacteria can produce electricity. This behavior can be exploited in microbial fuel cells, with a special focus on wastewater treatment schemes.
Controlling bacteria's necessary evil
Until now, scientists have only had a murky understanding of how these relationships arise.
Bacteria take a deadly risk to survive
Bacteria need mutations -- changes in their DNA code -- to survive under difficult circumstances.
How bacteria hunt other bacteria
A bacterial species that hunts other bacteria has attracted interest as a potential antibiotic, but exactly how this predator tracks down its prey has not been clear.
Chlamydia: How bacteria take over control
To survive in human cells, chlamydiae have a lot of tricks in store.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
'Pulling' bacteria out of blood
Magnets instead of antibiotics could provide a possible new treatment method for blood infection.
New findings detail how beneficial bacteria in the nose suppress pathogenic bacteria
Staphylococcus aureus is a common colonizer of the human body.
Understanding your bacteria
New insight into bacterial cell division could lead to advancements in the fight against harmful bacteria.
Bacteria are individualists
Cells respond differently to lack of nutrients.

Related Bacteria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".