Nav: Home

Researchers examine brain region that affects drug use habits

June 27, 2017

The human brain is nimble. It can reorganize itself to learn new things, catalog memories, and even break old habits. So, what if our brains could be taught to suppress cravings, especially the destructive impulse to use drugs?

University of Iowa researchers studying the infralimbic cortex--a region of the brain that controls addictive behavior--performed a series of experiments in which rats were given cocaine, then taken off the drug. The scientists found that, generally speaking, this region of the brain can be reprogrammed to ease the rats' cocaine urges.

The finding could help users kick the habit with the help of drugs that target the infralimbic cortex--or with improved behavioral treatment for substance addiction and relapse, according to Andrea Gutman, a postdoctoral researcher in the UI Department of Psychological and Brain Sciences and corresponding author on the paper, published in the Journal of Neuroscience.

The infralimbic cortex, a part of the prefrontal cortex located toward the front of the head, is responsible for forming habits and regulating behavior. Think of it as a mental green light or a check on destructive or embarrassing tendencies.

Researchers already knew about that role, but they were unsure how it controlled cravings and other habit-forming behaviors--or whether the infralimbic cortex could be manipulated to temper impulses. The UI team worked with a group of rats that were administered cocaine when they pressed a lever with their paws; the rats did so for two hours per day over the course of two weeks.

Over the next two weeks, the rats received no cocaine when they pressed the lever. When they realized they were no longer getting the drug, the rats pressed the lever less frequently, until, by the end of the two-week period, "they hardly pressed the lever at all," Gutman says. In other words, at least some of the rats learned to curb their addiction.

A second group of rats followed the same regimen as the control group and were allowed to use cocaine for two weeks. However, in this second group, the researchers turned off neurons in the rats' infralimbic cortex just as the animals pressed the drug-dispensing lever. By silencing those neurons for a period of 20 seconds every time the rats pressed the lever, the researchers in effect prevented the rats from learning to curb their drug appetite. The rats' cravings remained as intense as in the beginning of the experiment, even though they weren't receiving the drug.

"They're failing to learn to inhibit their cocaine craving," says Gutman, who works in the lab of Ryan LaLumiere, assistant professor in the UI Department of Psychological and Brain Sciences. "They want the cocaine just as much."

The researchers silenced the neurons in the rats' brains for the first five days of the cocaine-less two-week period. They found that these five days had a major impact on how effectively rats learned and began to adapt to the drug's absence. The rats whose neurons were silenced were more likely to relapse than those that underwent withdrawal, the study found.

The results strengthen the hypothesis that the infralimbic cortex plays an important role in the suppression of addictive behavior. It also points to when the region could best be "taught" to curb a habit.

"No study has looked intensively at exactly how the infralimbic cortex functions, nor the importance of the first five days of treatment when it comes to curtailing drug-seeking behavior," says LaLumiere, the paper's co-author. "And while our experiments involved cocaine, we think the results could hold true for the infralimbic cortex's role in conditioning withdrawal and relapse from other addictive substances, including opioids."

Kelle Nett, Caitlin Cosme, Wensday Worth, and Subhash Gupta, all from the UI, helped perform the research and are contributing authors on the paper. John Wemmie, UI professor of psychiatry, also is a contributing author.
-end-
The National Institute on Drug Abuse (a branch of the National Institutes of Health), the Department of Veterans Affairs, and the Brain & Behavior Research Foundation funded the research.

University of Iowa

Related Neurons Articles:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.
Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.
A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.
Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.
Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.
Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.
The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.
Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.
How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.
A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.