Nav: Home

Groundbreaking discovery confirms existence of orbiting supermassive black holes

June 27, 2017

For the first time ever, astronomers at The University of New Mexico say they've been able to observe and measure the orbital motion between two supermassive black holes hundreds of millions of light years from Earth - a discovery more than a decade in the making.

UNM Department of Physics & Astronomy graduate student Karishma Bansal is the first-author on the paper, 'Constraining the Orbit of the Supermassive Black Hole Binary 0402+379', recently published in The Astrophysical Journal. She, along with UNM Professor Greg Taylor and colleagues at Stanford, the U.S. Naval Observatory and the Gemini Observatory, have been studying the interaction between these black holes for 12 years.

"For a long time, we've been looking into space to try and find a pair of these supermassive black holes orbiting as a result of two galaxies merging," said Taylor. "Even though we've theorized that this should be happening, nobody had ever seen it until now."

In early 2016, an international team of researchers, including a UNM alumnus, working on the LIGO project detected the existence of gravitational waves, confirming Albert Einstein's 100-year-old prediction and astonishing the scientific community. These gravitational waves were the result two stellar mass black holes (~30 solar mass) colliding in space within the Hubble time. Now, thanks to this latest research, scientists will be able to start to understand what leads up to the merger of supermassive black holes that creates ripples in the fabric of space-time and begin to learn more about the evolution of galaxies and the role these black holes play in it.

Using the Very Long Baseline Array (VLBA), a system made up of 10 radio telescopes across the U.S. and operated in Socorro, N.M., researchers have been able to observe several frequencies of radio signals emitted by these supermassive black holes (SMBH). Over time, astronomers have essentially been able to plot their trajectory and confirm them as a visual binary system. In other words, they've observed these black holes in orbit with one another.

"When Dr. Taylor gave me this data I was at the very beginning of learning how to image and understand it," said Bansal. "And, as I learned there was data going back to 2003, we plotted it and determined they are orbiting one another. It's very exciting."

For Taylor, the discovery is the result of more than 20 years of work and an incredible feat given the precision required to pull off these measurements. At roughly 750 million light years from Earth, the galaxy named 0402+379 and the supermassive black holes within it, are incredibly far away; but are also at the perfect distance from Earth and each other to be observed.

Bansal says these supermassive black holes have a combined mass of 15 billion times that of our sun, or 15 billion solar masses. The unbelievable size of these black holes means their orbital period is around 24,000 years, so while the team has been observing them for over a decade, they've yet to see even the slightest curvature in their orbit.

"If you imagine a snail on the recently-discovered Earth-like planet orbiting Proxima Centauri - 4.243 light years away - moving at 1 cm a second, that's the angular motion we're resolving here," said Roger W. Romani, professor of physics at Stanford University and member of the research team.

"What we've been able to do is a true technical achievement over this 12-year period using the VLBA to achieve sufficient resolution and precision in the astrometry to actually see the orbit happening," said Taylor. "It's a bit of triumph in technology to have been able to do this."

While the technical accomplishment of this discovery is truly amazing, Bansal and Taylor say the research could also teach us a lot about the universe, where galaxies come from and where they're going.

"The orbits of binary stars provided tremendous insights about stars," said Bob Zavala, an astronomer with the U.S. Naval Observatory. "Now we'll be able to use similar techniques to understand super-massive black holes and the galaxies they reside within."

Continuing to observe the orbit and interaction of these two supermassive black holes could also help us gain a better understanding of what the future of our own galaxy might look like. Right now, the Andromeda galaxy, which also has a SMBH at its center, is on a path to collide with our Milky Way, meaning the event Bansal and Taylor are currently observing, might occur in our galaxy in a few billion years.

"Supermassive black holes have a lot of influence on the stars around them and the growth and evolution of the galaxy," explained Taylor. "So, understanding more about them and what happens when they merge with one another could be important for our understanding for the universe."

Bansal says the research team will take another observation of this system in three or four years to confirm the motion and obtain a precise orbit. In the meantime, the team hopes that this discovery will encourage related work from astronomers around the world.
-end-


University of New Mexico

Related Black Holes Articles:

Black holes? They are like a hologram
Spherical, smooth and simple according to the theory of relativity, or extremely complex and full of information as, according to quantum laws, Stephen Hawking used to say?
Under pressure, black holes feast
A new, Yale-led study shows that some supermassive black holes actually thrive under pressure.
Staining cycles with black holes
In the treatment of tumors, microenvironment plays an important role.
Black holes sometimes behave like conventional quantum systems
A group of Skoltech researchers led by Professor Anatoly Dymarsky have studied the emergence of generalized thermal ensembles in quantum systems with additional symmetries.
Scientists may have discovered whole new class of black holes
New research shows that astronomers' search for black holes might have been missing an entire class of black holes that they didn't know existed.
Growing old together: A sharper look at black holes and their host galaxies
The 'special relationship' between supermassive black holes (SMBHs) and their hosts -- something astronomers and physicists have observed for quite a while -- can now be understood as a bond that begins early in a galaxy's formation and has a say in how both the galaxy and the SMBH at its center grow over time, according to a new study from Yale University.
Are black holes made of dark energy?
Two University of Hawaii at Manoa researchers have identified and corrected a subtle error that was made when applying Einstein's equations to model the growth of the universe.
Telescopes in space for even sharper images of black holes
Astronomers have just managed to take the first image of a black hole, and now the next challenge facing them is how to take even sharper images, so that Einstein's Theory of General Relativity can be tested.
Can entangled qubits be used to probe black holes?
Information escapes from black holes via Hawking radiation, so it should be possible to capture it and use it to reconstruct what fell in: if given time longer than the age of the universe.
How black holes power plasma jets
Cosmic robbery powers the jets streaming from a black hole, new simulations reveal.
More Black Holes News and Black Holes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.