Nav: Home

Ozone recovery may be delayed by unregulated chemicals

June 27, 2017

Recent increases in an unregulated ozone-depleting substance, could delay recovery of Antarctic ozone levels by 5-30 years, depending on emissions scenarios.

The findings, published in Nature Communications, suggest that a previously ignored chemical called dichloromethane may now be contributing to ozone depletion and should be looked at to improve future ozone predictions.

Long-lived chlorine species, such as chlorofluorocarbons (CFCs), led to depletion of the stratospheric ozone layer in the 1980s, most drastically seen in the Antarctic.

After introduction of the UN Montreal protocol in 1987, which regulated emissions of ozone-depleting substances, stratospheric ozone began to recover and is projected to return to pre-1980 levels in the second-half of this century.

The Antarctic 'ozone hole' is expected to fully recover sometime between 2046 and 2057.

However, atmospheric concentrations of dichloromethane -- a short-lived, ozone-depleting substance not regulated by the Montreal Protocol -- have risen in recent years and could be contributing to ozone loss.

Study lead author Dr Ryan Hossaini, from the Lancaster Environment Centre at Lancaster University, said: "Dichloromethane is a man-made ozone-depleting chemical that has a range of industrial applications. Unlike CFCs and similar long-lived gases that are responsible for most ozone depletion, dichloromethane has a short atmospheric lifetime so has not been controlled by the Montreal Protocol. Despite this, increased production has led to a rapid increase in its atmospheric concentration over the past decade.

"While ozone depletion from dichloromethane is currently quite modest, it is uncertain how the amount of this gas in the atmosphere will change in the future. Our results show that continued sustained growth in its concentration could substantially delay recovery of the ozone layer, offsetting some of the future benefits of the Montreal Protocol."

Dr Ryan Hossaini of Lancaster University and colleagues use simulations with a global chemical transport model to examine the sensitivity of future stratospheric chlorine and ozone levels to sustained dichloromethane growth. Measurements of dichloromethane in the atmosphere over the past two decades, provided by scientists from the National Oceanic and Atmospheric Administration (NOAA) in the United States, were also analysed.

Study co-author Dr Stephen Montzka from the NOAA added: "The increases observed for dichloromethane from our measurements are striking and unexpected; concentrations had been decreasing slowly in the late 1990s, but since the early 2000s have increased by about a factor of two at sites throughout the globe."

"It is uncertain what is driving this growth. However, it could be related to increased use of this chemical as a solvent in place of other long-lived chemicals (e.g. CFCs and HCFCs) that have been phased out, or from use as feedstock in the production of other chemicals."

Their projections show that continued dichloromethane increases at the average trend observed from 2004-2014 would delay ozone recovery over Antarctica by 30 years. If dichloromethane concentrations stay at current levels, the delay in recovery would be only 5 years. Although the future trajectory of dichloromethane is uncertain, without any regulations on emissions, it is likely concentrations will fall somewhere in between the ranges presented here.

Study co-author Professor Martyn Chipperfield, from the University of Leeds' School of Earth and Environment, said: "We need to continue monitoring the atmospheric abundance of this gas and determine its sources. At present, the long-term recovery of the Ozone Layer from the effects of CFCs is still on track, but the presence of increasing dichloromethane will add some uncertainty to our future predictions of ozone and climate."

The ozone layer shields Earth's surface from certain wavelengths of harmful solar ultraviolet (UV) radiation that would otherwise be detrimental to human, animal and plant health. Ozone also absorbs terrestrial infrared (IR) radiation and changes in its abundance can influence climate.

On the broader implications of the findings and outlook, Dr Hossaini said: "Ozone is an important climate gas and changes to its abundance, including due to the increasing influence of dichloromethane, could be relevant for refining future climate predictions.

"We should be mindful to the growing threat to stratospheric ozone posed by dichloromethane and similar chemicals not controlled by the Montreal Protocol. There is work to be done to better understand and quantify their main sources to the atmosphere."
-end-
The DOI for this paper will be 10.1038/NCOMMS15962. It is available online here http://www.nature.com/naturecommunications.

"The increasing threat to stratospheric ozone from dichloromethane" is scheduled for publication in Nature Communications' on 27th June at 1600 London time (BST) / 1100 US Eastern time

Lancaster University

Related Ozone Articles:

Ozone threat from climate change
We know the recent extreme heat is something that we can expect more of as a result of increasing temperatures due to climate change.
Super volcanic eruptions interrupt ozone recovery
Strong volcanic eruptions, especially when a super volcano erupts, will have a strong impact on ozone, and might interrupt the ozone recovery processes.
How severe drought influences ozone pollution
From 2011 to 2015, California experienced its worst drought on record, with a parching combination of high temperatures and low precipitation.
New threat to ozone recovery
A new MIT study, published in Nature Geoscience, identifies another threat to the ozone layer's recovery: chloroform -- a colorless, sweet-smelling compound that is primarily used in the manufacturing of products such as Teflon and various refrigerants.
Ozone hole modest despite optimum conditions for ozone depletion
The ozone hole that forms in the upper atmosphere over Antarctica each September was slightly above average size in 2018, NOAA and NASA scientists reported today.
Increased UV from ozone depletion sterilizes trees
UC Berkeley paleobotanists put dwarf, bonsai pine trees in growth chambers and subjected them to up to 13 times the UV-B radiation Earth experiences today, simulating conditions that likely existed 252 million years ago during the planet's worst mass extinction.
Ozone at lower latitudes is not recovering, despite Antarctic ozone hole healing
The ozone layer -- which protects us from harmful ultraviolet radiation -- is recovering at the poles, but unexpected decreases in part of the atmosphere may be preventing recovery at lower latitudes.
The ozone layer continues to thin
The vital ozone layer has continued to deplete in recent years over the densely populated mid-latitudes and tropics, while it is recovering at the poles.
Study reveals new threat to the ozone layer
'Ozone depletion is a well-known phenomenon and, thanks to the success of the Montreal Protocol, is widely perceived as a problem solved,' says University of East Anglia's David Oram.
Ozone pollution connected to cardiovascular health
Exposure to ozone, a risk for impaired lung function, is also connected to health changes that can cause cardiovascular disease such as heart attack, high blood pressure and stroke, according to a new study of Chinese adults.
More Ozone News and Ozone Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

Risk
Why do we revere risk-takers, even when their actions terrify us? Why are some better at taking risks than others? This hour, TED speakers explore the alluring, dangerous, and calculated sides of risk. Guests include professional rock climber Alex Honnold, economist Mariana Mazzucato, psychology researcher Kashfia Rahman, structural engineer and bridge designer Ian Firth, and risk intelligence expert Dylan Evans.
Now Playing: Science for the People

#540 Specialize? Or Generalize?
Ever been called a "jack of all trades, master of none"? The world loves to elevate specialists, people who drill deep into a single topic. Those people are great. But there's a place for generalists too, argues David Epstein. Jacks of all trades are often more successful than specialists. And he's got science to back it up. We talk with Epstein about his latest book, "Range: Why Generalists Triumph in a Specialized World".
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.