Nav: Home

Training changes the way the brain pays attention

June 27, 2017

Behavioral training changes the way attention facilitates information processing in the human brain, a study publishing on June 27 in the open access journal PLOS Biology led by Sirawaj Itthipuripat, at University of California San Diego, has found.

After moving to a new city, driving to work on the second or third day may feel very different than it felt on the first day. Over time, drivers will feel more at ease on the road, not only because they can better remember which road signs to attend to or where to turn, but also because they will have an actual experience of doing so. This type of cognitive phenomenon applies not only for everyday-life activities like driving, but also for career-related skills that require training and expertise such as reading x-rays and excelling in sporting activities.

The scientists monitored behavioral performance and brain activity using electroencephalography (EEG) for over 1 month in human participants performing a computer task that required them to direct their attention to a visual stimulus.

They discovered that early in the task, attention enhanced the magnitude of sensory-evoked responses in the visual cortex. Using computational modeling, they also found that this attentional gain predicted the benefit of training observed in behavioral performance. Surprisingly, after extended training, this attentional gain disappeared, even though behavioral performance was still improved compared to before training. Their modelling experiments indicated that after extended training noise-reduction in brain activity predicted the benefit of training in behavioral performance.

Interestingly, these findings also help reconcile contradictory results observed across studies conducted in different species. Specifically, in monkeys, previous research has demonstrated that changes in neural noise play a more dominant role than attentional gain in supporting attention-related benefits in behavioral performance. The current findings in humans suggest that this particular result from monkey studies could be due to non-human primates being highly-trained.

According to Itthipuripat, "Most primate studies have to train subjects over many months to perform behavioral tasks that humans can conceptualize and perform well within 2-3 minutes. So, it is not surprising that many times, results obtained from humans and monkeys diverge from one another. Here we had to train human participants across many days to observe converging results across the two species. Our research, which demonstrates that attentional mechanisms could change with training, teaches us that we can't fully understand how attention operates at the neural level without understanding how attentional mechanisms may change through a course of training. Thus, our research has important implications for understanding attentional mechanisms, as well as for generalizing results from studies using different species that often require substantially different amounts of training."
-end-
In your coverage please use this URL to provide access to the freely available article in PLOS Biology: https://doi.org/10.1371/journal.pbio.2001724

Citation: Itthipuripat S, Cha K, Byers A, Serences JT (2017) Two different mechanisms support selective attention at different phases of training. PLoS Biol 15(6): e2001724. https://doi.org/10.1371/journal.pbio.2001724

Funding: HHMI International Fellowship http://www.hhmi.org/. Received by SI. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. James S. McDonnell Foundation award https://www.jsmf.org/. Received by JTS. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. NEI https://nei.nih.gov/ (grant number RO1-025872). Received by JTS. The funder had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

PLOS

Related Brain Activity Articles:

How dopamine drives brain activity
Using a specialized magnetic resonance imaging (MRI) sensor that can track dopamine levels, MIT neuroscientists have discovered how dopamine released deep within the brain influences distant brain regions.
Brain activity intensity drives need for sleep
The intensity of brain activity during the day, notwithstanding how long we've been awake, appears to increase our need for sleep, according to a new UCL study in zebrafish, published in Neuron.
Do babies like yawning? Evidence from brain activity
Contagious yawning is observed in many mammals, but there is no such report in human babies.
Understanding brain activity when you name what you see
Using complex statistical methods and fast measurement techniques, researchers found how the brain network comes up with the right word and enables us to say it.
Your brain activity can be used to measure how well you understand a concept
As students learn a new concept, measuring how well they grasp it has often depended on traditional paper and pencil tests.
Altered brain activity in antisocial teenagers
Teenage girls with problematic social behavior display reduced brain activity and weaker connectivity between the brain regions implicated in emotion regulation.
Gender impacts brain activity in alcoholics
Compared to alcoholic women, alcoholic men have more diminished brain activity in areas responsible for emotional processing (limbic regions including the amygdala and hippocampus), as well as memory and social processing (cortical regions including the superior frontal and supramarginal regions) among other functions.
Light, physical activity reduces brain aging
Incremental physical activity, even at light intensity, is associated with larger brain volume and healthy brain aging.
Measuring brain activity in milliseconds possible through new research
Researchers from King's College London, Harvard and INSERM-Paris have discovered a new way to measure brain function in milliseconds using magnetic resonance elastography (MRE).
Autism: Brain activity as a biomarker
Researchers from Jülich, Switzerland, France, the Netherlands, and the UK have discovered specific activity patterns in the brains of people with autism.
More Brain Activity News and Brain Activity Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.