Nav: Home

Researchers ID network of neurons crucial for vocal learning

June 27, 2017

DALLAS - Researchers have identified a network of neurons that plays a vital role in learning vocalizations by aiding communication between motor and auditory regions of the brain.

A new study from the Peter O'Donnell Jr. Brain Institute demonstrates in songbirds the necessity of this neural circuit to learn vocalizations at a young age, a finding that expands the scientific understanding of some contributing factors in speech disorders in humans.

"Speech and language learning depend on our ability to evaluate how accurately we are producing the particular sounds associated with speech," said Dr. Todd Roberts, Assistant Professor of Neuroscience with the O'Donnell Brain Institute at UT Southwestern Medical Center. "This evaluation has long been thought to rely on close interactions between auditory and speech-related motor areas of the brain, but identification of specific brain pathways involved in this process has been challenging."

Songbird Extras Researchers in Dr. Roberts' songbird lab used zebra finches to study how brain circuits learn and control song. They found a network of neurons in the brain's motor cortex that sends a copy of vocal commands - what the bird intends to sing - to the auditory cortex. It is thought that as the birds hear themselves sing, this brain pathway helps them compare their produced sounds to what they intended to sing.

The study featured on the cover of July's Nature Neuroscience showed that disabling the neurons in this pathway impeded juvenile songbirds' ability to learn a new song. Adult songbirds were able to sing what they had previously learned but could no longer learn to change the timing and tempo of their song.

"To understand and address the causes of speech disorders requires a fundamental understanding of the brain circuits and computations involved in learning and controlling speech," said Dr. Roberts, a Thomas O. Hicks Scholar in Medical Research. "This new study is revelatory in the sense that it pinpoints a brain circuit long speculated to perform important computations involved in speech learning and provides the first proof that this circuit is critical to learning vocal behaviors."

The research complements other work being done in Dr. Roberts' lab, including an ongoing study funded by the federal BRAIN Initiative research program to understand how the brain functions during vocal learning. By mapping the neural processes involved as birds learn mating songs, scientists hope to someday use that knowledge to target specific genes disrupting speech in patients with autism or other neurodevelopmental conditions.
-end-
The NatureNeuroscience study received support from the National Institutes of Health, National Science Foundation, the Brain & Behavior Research Foundation, and the Klingenstein-Simons Fellowship.

Other collaborators include Gaurav Chattree, a medical student at UTSW; Dr. Richard Mooney, Erin Hisey, Dr. Masashi Tanaka, and Matthew Kearney from Duke University Medical Center; and Drs. Nirao Shah and Cindy Yang from University of California San Francisco.

About UT Southwestern Medical Center

UT Southwestern, one of the premier academic medical centers in the nation, integrates pioneering biomedical research with exceptional clinical care and education. The institution's faculty has received six Nobel Prizes, and includes 22 members of the National Academy of Sciences, 18 members of the National Academy of Medicine, and 14 Howard Hughes Medical Institute Investigators. The faculty of more than 2,700 is responsible for groundbreaking medical advances and is committed to translating science-driven research quickly to new clinical treatments. UT Southwestern physicians provide care in about 80 specialties to more than 100,000 hospitalized patients, 600,000 emergency room cases, and oversee approximately 2.2 million outpatient visits a year.
-end-
This news release is available on our website at http://www.utsouthwestern.edu/newsroom.

To automatically receive news releases from UT Southwestern via email, subscribe at http://www.utsouthwestern.edu/receivenews.

UT Southwestern Medical Center

Related Neurons Articles:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.
Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.
A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.
Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.
Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.
Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.
The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.
Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.
How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.
A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.