Nav: Home

Cystic fibrosis alters the structure of mucus in airways

June 27, 2017

Mucus is important for maintaining healthy lungs. Inhaled particles, including bacteria and viruses, get trapped in mucus and then cilia -- tiny hair like projections on the surface of the airway cells -- sweep the mucus out of the airway.

In lungs affected by cystic fibrosis (CF), the mucus is abnormal and the lung-clearing process breaks down. This deficit may contribute to lung infections and inflammation that cause serious, life-shortening illness in people with CF.

In a new study, published in Proceedings of the National Academy of Sciences (PNAS) Early Edition, University of Iowa researchers led by Michael Welsh, MD, director of the UI Pappajohn Biomedical Institute, professor of internal medicine in the UI Carver College of Medicine, and a Howard Hughes Medical Institute investigator, and Lynda Ostedgaard, PhD, investigated how CF alters the structure of mucus produced in airway passages. The study focused on two gel-forming mucin proteins, MUC5B and MUC5AC, that are the major components of airway mucus. Studying these two proteins in pigs, the researchers found that they have distinct and different structures and origins. MUC5B is produced by submucosal glands in the form of strands, while MUC5AC is secreted by goblet cells as wispy threads and thin sheets. The study also showed that once these two types of mucus protein emerge onto the airway surface, they combine so that the MUC5B strands are partly covered with MUC5AC sheets. This overall structure may be helpful for capturing and clearing inhaled particles.

However, in pig airways that are affected by CF, these mucins look different. The strands of MUC5B become tangled, and often fill the submucosal gland ducts and fail to detach properly, and MUC5AC sheets are larger and more abundant.

"We generally think of mucus that covers the airways as a homogeneous material," says Ostedgaard, UI research associate professor of internal medicine, and first author of the study. "This work reveals that mucus from submucosal glands and mucus from goblet cells have different morphological structures. These structures may serve different purposes in clearing particulates and bacteria from our lungs. Our study also shows how these structures are abnormal in cystic fibrosis, explaining why patients with this disease have difficulty clearing mucus from their lungs."

The next step will be to understand why airways produce these different types of mucus structures and learn whether the different mucus structures actually play a role in CF lung disease, and other airway diseases like asthma and COPD

"Our observations make us think differently about how mucus functions in the airway, and how that might change in lung diseases like cystic fibrosis," Ostedgaard says. A better understanding of the structure and proper function of airway mucus might help us understand how abnormal mucus develops in CF, and even point us to new ways to treat or prevent lung disease."
-end-
In addition to Ostedgaard and Welsh, the UI team also included Tom Moninger, James McMenimen, Nicholas Swain, Connor Parker, Ian Thornell, Linda Powers, Nicholas Gansemer, Drake Bouzek, Daniel Cook, David Meyerholz, Mahmoud Abou Alaiwa, and David Stoltz.

The research was supported in part by grants from the National Heart, Lung and Blood Institute, the Cystic Fibrosis Foundation and the Roy J. Carver Charitable Trust.

University of Iowa Health Care

Related Cystic Fibrosis Articles:

Cystic fibrosis: why so many respiratory complications?
Cystic fibrosis, one of the most common genetic diseases in Switzerland, causes severe respiratory and digestive disorders.
A newly discovered disease may lead to better treatment of cystic fibrosis
Cystic fibrosis is the most frequent severe inherited disorder worldwide.
New treatment kills off infection that can be deadly to cystic fibrosis patients
The findings, which are published in the journal Scientific Reports, show that scientists from Aston University, Mycobacterial Research Group, combined doses of three antibiotics -- amoxicillin and imipenem-relebactam and found it was 100% effective in killing off the infection which is usually extremely difficult to treat in patients with cystic fibrosis.
Cystic fibrosis carriers are at increased risk for cystic fibrosis-related conditions
A University of Iowa study challenges the conventional wisdom that having just one mutated copy of the cystic fibrosis (CF) gene has no effects on a person's health.
Modifier gene may explain why some with cystic fibrosis are less prone to infection
People with cystic fibrosis who carry genetic variants that lower RNF5 gene expression have more mutant CFTR protein on cell surfaces.
Rare mutations drive cystic fibrosis in Caribbean
Cystic Fibrosis (CF) in the Caribbean is dominated by unusual gene mutations not often observed in previously studied CF populations, according to comprehensive genome sequencing led by physician-scientists at UC San Francisco and Centro de Neumología Pediátrica in San Juan.
Cystic fibrosis carriers at increased risk of digestive symptoms
Researchers have found that carriers of the most common genetic variant that causes cystic fibrosis experience some symptoms similar to those of people with cystic fibrosis.
In cystic fibrosis, lungs feed deadly bacteria
A steady supply of its favorite food helps a deadly bacterium thrive in the lungs of people with cystic fibrosis, according to a new study by Columbia researchers.
Cibio knocks out cystic fibrosis
The fight against cystic fibrosis continues, targeting in particular some of the mutations that cause it.
Hypertonic saline may help babies with cystic fibrosis breathe better
Babies with cystic fibrosis may breathe better by inhaling hypertonic saline, according to a randomized controlled trial conducted in Germany and published in the American Thoracic Society's American Journal of Respiratory and Critical Care Medicine.
More Cystic Fibrosis News and Cystic Fibrosis Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.