Nav: Home

A mouse's view of the world, seen through its whiskers

June 27, 2017

Mice, unlike cats and dogs, are able to move their whiskers to map out their surroundings, much as humans use their fingers to build a 3D picture of a darkened room.

University of California, Berkeley researchers have for the first time reconstructed the whisker map a mouse creates of its surroundings in order to navigate its world, catch insects and avoid cats.

These are not the typical brain maps that show which brain cells are activated when a particular whisker is tweaked, or, in humans, the so-called homunculus map in the human cortex of touch receptors on the skin.

"It's not a body map but a spatial map of the area around the animal's head that is being scanned by the whiskers: a totally new thing that has not been shown before in any species," said Hillel Adesnik, a UC Berkeley assistant professor of molecular and cell biology.

Humans may also have sensory maps of the outside world encoded in the neurons of the brain's cerebral cortex, Adesnik said -- not only touch maps, but also maps of what we see and hear, and perhaps our other senses.

Adesnik and his colleagues published their results in the current issue of the journal Neuron, now available online.

Whisking behavior

Researchers study rodent whiskers because the sensory nerves at the base of each whisker connect to well-defined structures in the cortex or outer layer of the brain -- so-called barrel columns, because they're shaped like a barrel. Each of the mouse's 24 large facial whiskers has an associated barrel column that's activated when the whisker encounters an object. The entire barrel cortex is between 2.5 and 3 millimeters across.

Neuroscientists have thoroughly mapped these columns over the past decades, and continue to study them to discover how brain circuits process, store and use sensory information.

Adesnik, however, was more interested in how the brain actually uses whisker information to construct a picture of the world around the head.

"Beyond the reach of the whiskers, rodents use vision as well as auditory and olfactory cues to explore the world, but because their near vision is very blurry, close to the face rodents use touch," he said. "With their whiskers they scan the world the way we would scan with our hand at night on the night table to look for our cellphone."

The question he asked was, "How does an animal represent space in its cortex so it can localize and then identify an object so that it can execute an action, like picking up the phone, or, for rodents, identifying something it wants to eat?"

The answer lies in a layer of cells in the outermost thickness of the mouse's somatosensory cortex. While the barrel cells in the preceding cortical layer, layer 4, are patterned according to the whiskers, neurons in layers 2 and 3 receive input from several barrel cells at once and process this information. Layer 4 is only about 200 microns deep, while layers 2 and 3 about 300 microns deep.

"The hypothesis was that layers 2 and 3, which are one step away from layer 4, are not just encoding whiskers; maybe they are encoding space, that is, the space the whiskers are currently scanning," Adesnik said. "You can think of it as the mouse's field of view as it's moving its whiskers. Maybe there is a map that represents that space, and not the whiskers."

Using two-photon calcium imaging, which allows more precise localization of fluorescently tagged nerve cells deeper inside brain tissue, Adesnik was able to map how the cells in layers 2 and 3 respond when the mice whisked their whiskers and encountered objects near their head. In most prior studies, mice were sedated or anesthetized and experimenters moved one whisker at at time. In this study, the animals were awake and moved their whiskers into objects while running on a treadmill.

His recordings of cell activation through a window in the skull revealed a smooth map of the physical space the mouse was exploring with its whiskers, not a map of specific whisker activity.

"We think that in layer 4, the neurons really care about whiskers, but not the scanned space," he said, "while in 2 and 3 they are integrating over whiskers, perhaps even performing a mathematical operation something like smoothing over multiple whiskers, that encodes the absolute horizontal location of the object in the reference frame of the animal's head."

The map changes continually as the animal moves its head.

The findings suggest that humans may also have a smooth touch map of the space around us in the somatosensory cortex; not only a finger representation, but a representation of where the hand is currently scanning, he said.

Adesnik and his lab colleagues are now looking at higher areas of the cortex, which likely do more information processing to identify objects such as prey and connect with motor neurons to trigger a pounce.
-end-
Adesnik's co-authors on the paper are postdoctoral fellow Scott Pluta and graduate students Evan Lyall, Greg Telian and Elena Ryapolova-Webb. The work was supported by the New York Stem Cell Foundation, the Whitehall Foundation and the National Institute of Neurological Diseases and Stroke of the National Institutes of Health (DP2NS087725).

University of California - Berkeley

Related Neurons Articles:

Paying attention to the neurons behind our alertness
The neurons of layer 6 - the deepest layer of the cortex - were examined by researchers from the Okinawa Institute of Science and Technology Graduate University to uncover how they react to sensory stimulation in different behavioral states.
Trying to listen to the signal from neurons
Toyohashi University of Technology has developed a coaxial cable-inspired needle-electrode.
A mechanical way to stimulate neurons
Magnetic nanodiscs can be activated by an external magnetic field, providing a research tool for studying neural responses.
Extraordinary regeneration of neurons in zebrafish
Biologists from the University of Bayreuth have discovered a uniquely rapid form of regeneration in injured neurons and their function in the central nervous system of zebrafish.
Dopamine neurons mull over your options
Researchers at the University of Tsukuba have found that dopamine neurons in the brain can represent the decision-making process when making economic choices.
Neurons thrive even when malnourished
When animal, insect or human embryos grow in a malnourished environment, their developing nervous systems get first pick of any available nutrients so that new neurons can be made.
The first 3D map of the heart's neurons
An interdisciplinary research team establishes a new technological pipeline to build a 3D map of the neurons in the heart, revealing foundational insight into their role in heart attacks and other cardiac conditions.
Mapping the neurons of the rat heart in 3D
A team of researchers has developed a virtual 3D heart, digitally showcasing the heart's unique network of neurons for the first time.
How to put neurons into cages
Football-shaped microscale cages have been created using special laser technologies.
A molecule that directs neurons
A research team coordinated by the University of Trento studied a mass of brain cells, the habenula, linked to disorders like autism, schizophrenia and depression.
More Neurons News and Neurons Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Warped Reality
False information on the internet makes it harder and harder to know what's true, and the consequences have been devastating. This hour, TED speakers explore ideas around technology and deception. Guests include law professor Danielle Citron, journalist Andrew Marantz, and computer scientist Joy Buolamwini.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.