Nav: Home

Recreating the chameleon: material mimics color changes of living organisms

June 27, 2018

Researchers at Nagoya University develop a composite material that, by adjusting its composition and exposing it to different types of light, can mimic animals' changes in color.

Nagoya, Japan - A range of creatures, including chameleons, octopuses, and frogs, can change color in response to changes in the environment. Some insights into the mechanisms behind this at the anatomical, cellular, and molecular levels have been obtained. However, much work is still required to obtain sufficient understanding of this phenomenon and to translate it into useful artificial applications.

As reported in the journal Small, researchers at Nagoya University's Department of Molecular Design and Engineering developed a material containing dyes and crystals that can change the colors and patterns it displays depending on the background color used within it and its exposure to visible or ultraviolet light. You can see a video abstract on this at the website of this journal.

The team was inspired to develop this material by findings obtained in the skin of certain frogs, in which different layers of cells with different properties combine to enable remarkable color changes.

Each component of this novel material plays a key role in its color properties. For example, the dyes contribute their inherent colors to the material's appearance, which can be adjusted by mixing them to different extents. These dyes also include those that change color upon exposure to light.

Spherical crystals were also introduced into the system, which rather than influencing the color through their inherent pigmentation affect it through their microscopic structures that can directly interfere with light. Finally, a black pigment and different background colors were employed to alter the colors the other components of the system display.

"We examined the influences of the different components in the system, such as by changing the size of the crystals, switching the background from white to black, or performing exposure to visible or ultraviolet light," corresponding author Yukikazu Takeoka says. "We found these changes resulted in different colors being displayed across the material, resembling the way in which some organisms can change color in response to various factors in their environment."

"This is an exciting stage in this field of study, as we are increasingly able to adapt the color-changing mechanisms that some animals use to artificial devices," study first author Miki Sakai adds. "If these artificial color-changing materials can equal or surpass the vibrant displays that some animals such as octopuses and frogs make, it could have exciting applications in the development of new display technologies."
-end-
The article "Bioinspired Color Materials Combining Structural, Dye, and Background Colors" was published in Small at DOI: 10.1002/smll.201800817.

Nagoya University

Related Ultraviolet Light Articles:

Skin cancer risk in athletes: The dangers of ultraviolet radiation
The dangers of ultraviolet radiation exposure, which most often comes from the sun, are well-known.
Shedding light on the reaction mechanism of PUVA light therapy for skin diseases
Together with their Munich-based colleagues, a team of physical chemists from Heinrich Heine University Düsseldorf (HHU) has clarified which chemical reactions take place during PUVA therapy.
Hubble captures cosmic fireworks in ultraviolet
Hubble offers a special view of the double star system Eta Carinae's expanding gases glowing in red, white, and blue.
Stretchable interlaced-nanowire film for ultraviolet photodetectors with high response speed
Recently, one research group from the Institute of Semiconductors, Chinese Academy of Sciences, presented an interesting SnO2-CdS NW interlaced structure to fabricate stretchable UV photodetectors with high response speed in Science China Materials.
Understanding high efficiency of deep ultraviolet LEDs
Deep ultraviolet light-emitting diodes (DUV-LEDs) made from aluminium gallium nitride (AlGaN) efficiently transfer electrical energy to optical energy due to the growth of one of its bottom layers in a step-like fashion.
New method uses ultraviolet light to control fluid flow and organize particles
A new, simple, and inexpensive method that uses ultraviolet light to control particle motion and assembly within liquids could improve drug delivery, chemical sensors, and fluid pumps.
Ultraviolet disinfection 97.7 percent effective in eliminating pathogens in hospital settings
Using ultraviolet (UV) disinfection technology to reduce the risk of hospital-acquired infections eliminated up to 97.7 percent.
Scientists discover novel process to convert visible light into infrared light
Columbia and Harvard scientists have developed a novel chemical process to convert infrared energy into visible light, allowing innocuous radiation to penetrate living tissue and other materials without the damage caused by high-intensity light exposure.
Atomic jet -- the first lens for extreme-ultraviolet light developed
Scientists from the Max Born Institute have developed the first refractive lens that focuses extreme ultraviolet beams.
Scientists discover biological ultraviolet protection 'timer'
Tel Aviv University Prof. Carmit Levy and her team have discovered a critical 48-hour cycle responsible for synchronizing the biological mechanisms that protect our skin from sun damage.
More Ultraviolet Light News and Ultraviolet Light Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.