Nav: Home

Oxide sintering by air pressure control

June 27, 2018

The air-pressure control atmosphere furnace developed by Professor Nakano is a sintering furnace that uses a regular 100 V AC power outlet and saves up to 800 W of energy. With this furnace, pressurized gas is supplied/controlled using a compressor or gas flow and materials can be heated up to 1,100C°. (FIG. 1)

In order to verify the performance of this furnace, the present study focused on LNT solid solutions. Professor Nakano and her team have worked on LNT solid solutions for many years, researching their electrical properties and application as a host material of phosphor, and had already obtained basic data on the material in electric furnaces and millimeter-wave heating systems. Professor Nakano explains that, "In a particular formation area, this material exhibits a unique periodic structure (superstructure) known as the M-phase in a self-organized formation. This superstructure has a trigonal LiNbO3-type structure as a matrix and is formed by periodically inserting a corundum [Ti2O3]2+ layer as an intergrowth layer so as to divide the matrix." With a conventional electric furnace, materials that have a uniform superstructure require a long sintering process to be synthesized. If these materials could be uniformly synthesized in a shorter period of time, they could be more widely used as practical materials.

How exactly was rapid synthesizing achieved in the present study? It is generally known that an oxygen vacancy mechanism is dominant at low oxygen partial pressures and cation vacancy is dominant at high oxygen partial pressures. Using low gas pressure for this study led the team to discover that there exists an oxygen diffusion mechanism involving interstitial oxygen despite the dominance of cation vacancy. As shown in FIG. 2, Ti valence changes from Ti4+ to Ti3+ at the intergrowth layer to cause oxygen vacancy. Then, interstitial oxygens promote oxygen diffusion along the direction of intergrowth layer just like balls on a pool table. As a result, the grain shapes become anisotropic in the grain growth direction and plate-like grains are formed.

At the start of development, I considered rapid sintering using a different device because I believed there was no way rapid sintering could be performed using an air-pressure control furnace at approximately 3x the ordinary pressure. But one day, an engineer at our research partner company Full-Tech Co. Ltd., carried out an experiment using this furnace. Even though no similar experiments had been successful in the past, that particular experiment on that particular day produced a very even material. From then on, I started to conduct experiments in this air-pressure control furnace under various conditions to finally confirm a reduction in the sintering process. However, at the time, there were very few reports on successful material synthesis in such pressurized areas, and I spent three months sifting through publications to try and uncover the mechanism behind rapid sintering. It was then that I attended a conference at which one invited speaker talked about oxygen diffusion behavior at high temperatures, showing a video that explained their simulation results. The interstitial oxygen dispersed oxygen ions in a material when the material has oxygen vacancies much like balls on a pool table when struck. As soon as I saw that video, I put two and two together and realized that that was the mechanism behind rapid sintering.

Currently, we are looking to apply this technology to other materials that take a long time to sinter in an air-pressure control atmosphere furnace. This material can also be used as a material for products in different fields such as optical communication devices, various sensors and LEDs.
-end-
This work was partially supported by a Grant-in-Aid for Scientific Research (c) No. 16K06721 (Hiromi Nakano) by the Japan Society for the Promotion of Science.

Reference

Hiromi Nakano, Konatsu Kamimoto, Takahisa Yamamoto, Yoshio Furuta, "Rapid Sintering of Li2O-Nb2O5-TiO2 Solid Solution by air pressure control and clarification of its mechanism", Materials, (2018), 11, 987, doi:10.3390/ma11060987

Toyohashi University of Technology

Related Technology Articles:

The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).
AI technology could help protect water supplies
Progress on new artificial intelligence (AI) technology could make monitoring at water treatment plants cheaper and easier and help safeguard public health.
Transformative technology
UC Davis neuroscientists have developed fluorescence sensors that are opening a new era for the optical recording of dopamine activity in the living brain.
Do the elderly want technology to help them take their medication?
Over 65s say they would find technology to help them take their medications helpful, but need the technology to be familiar, accessible and easy to use, according to research by Queen Mary University of London and University of Cambridge.
Technology detecting RNase activity
A KAIST research team of Professor Hyun Gyu Park at Department of Chemical and Biomolecular Engineering developed a new technology to detect the activity of RNase H, a RNA degrading enzyme.
Taking technology to the next level
Physicists from the ARC Centre of Excellence for Ultrahigh bandwidth Devices for Optical Systems (CUDOS) developed a new hybrid integrated platform, promising to be a more advanced alternative to conventional integrated circuits.
How technology use affects at-risk adolescents
More use of technology led to increases in attention, behavior and self-regulation problems over time for adolescents already at risk for mental health issues, a new study from Duke University finds.
Hold-up in ventures for technology transfer
The transfer of technology brings ideas closer to commercialization. The transformation happens in several steps, such as invention, innovation, building prototypes, production, market introduction, market expansion, after sales services.
The ultimate green technology
Imagine patterning and visualizing silicon at the atomic level, something which, if done successfully, will revolutionize the quantum and classical computing industry.
New technology detects COPD in minutes
Pioneering research by Professor Paul Lewis of Swansea University's Medical School into one of the most common lung diseases in the UK, Chronic Obstructive Pulmonary Disease, has led to the development of a new technology that can quickly and easily diagnose and monitor the condition.
More Technology News and Technology Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.