Nav: Home

Researchers present new strategy for extending ductility in a single-phase alloy

June 27, 2018

Simultaneous high strength and large ductility are always desirable for metallic materials. However, while the strength of metals and alloys can be easily increased by 5-15 times through simple plastic deformation or grain refinement down to the nano-scale, the gain in strength is usually accompanied by a drastic loss of uniform ductility. Ductility depends strongly on the work hardening ability, which becomes weak in materials with high strength, especially in a single-phase material.

Publishing online in PNAS, the research group of Prof. WU Xiaolei at the State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, in collaboration with Prof. En Ma at the Department of Materials Science and Engineering, Johns Hopkins University, USA, have demonstrated a strategy for exploiting a dynamically reinforced multilevel heterogeneous grain structure (HGS).

They demonstrated the behavior of such an HGS using the face-centered-cubic CrCoNi medium-entropy alloy (MEA) as a model system.

Back stress hardening is usually not obvious in single-phase homogeneous grains. To overcome this, the scientists purposely created an unusually heterogeneous grain structure.

They took advantage of the low stacking fault energy of the MEA, which facilitates the generation of twinned nano-grains and stacking faults during tensile straining, dynamically reinforcing the heterogeneity on the fly.

For the resultant extreme HGS, back stress hardening can be made unusually strong and sustained to large tensile strains after yielding at gigapascal stress, in the absence of heterogeneities from any second phase.

Specifically, using cold rolling and recrystallization annealing, the researchers skillfully constructed an HGS with three-level grain sizes (micrometer, submicron, and nanometer), across which stress and strain partitioning occur when the HGS is plastically deformed.

Especially, new nano-grains form at grain corners due to the larger stresses there. This dynamic grain refinement, similar to the TWIP effect and the TRIP effect, contributes to the back stress hardening, which is found to be the largest in all the alloys reported so far.

This HGS achieves in a single-phase, simple-structured (FCC) alloy a strength-ductility combination that would normally require complex heterogeneities such as in multi-phase steels.
This research was supported by the National Key R&D Program of China, the National Natural Science Foundation of China, and the Strategic Priority Research Program of the Chinese Academy of Sciences.

Chinese Academy of Sciences Headquarters

Related Stress Articles:

Captive meerkats at risk of stress
Small groups of meerkats -- such as those commonly seen in zoos and safari parks -- are at greater risk of chronic stress, new research suggests.
Stress may protect -- at least in bacteria
Antibiotics harm bacteria and stress them. Trimethoprim, an antibiotic, inhibits the growth of the bacterium Escherichia coli and induces a stress response.
Some veggies each day keeps the stress blues away
Eating three to four servings of vegetables daily is associated with a lower incidence of psychological stress, new research by University of Sydney scholars reveals.
Prebiotics may help to cope with stress
Probiotics are well known to benefit digestive health, but prebiotics are less well understood.
Building stress-resistant memories
Though it's widely assumed that stress zaps a person's ability to recall memory, it doesn't have that effect when memory is tested immediately after a taxing event, and when subjects have engaged in a highly effective learning technique, a new study reports.
Stress during pregnancy
The environment the unborn child is exposed to inside the womb can have a major effect on her or his development and future health.
New insights into how the brain adapts to stress
New research led by the University of Bristol has found that genes in the brain that play a crucial role in behavioural adaptation to stressful challenges are controlled by epigenetic mechanisms.
Uncertainty can cause more stress than inevitable pain
Knowing that there is a small chance of getting a painful electric shock can lead to significantly more stress than knowing that you will definitely be shocked.
Stress could help activate brown fat
Mild stress stimulates the activity and heat production by brown fat associated with raised cortisol, according to a study published today in Experimental Physiology.
Experiencing major stress makes some older adults better able to handle daily stress
Dealing with a major stressful event appears to make some older adults better able to cope with the ups and downs of day-to-day stress.

Related Stress Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".