Grease in space

June 27, 2018

The galaxy is rich in grease-like molecules, according to an Australian-Turkish team. Astronomers at the University of New South Wales in Sydney (UNSW), and Ege University in Turkey used a laboratory to manufacture material with the same properties as interstellar dust and used their results to estimate the amount of 'space grease' found in the Milky Way. Their results appear in a paper in Monthly Notices of the Royal Astronomical Society.

Organic matter of different kinds contains carbon, an element considered essential for life. There is though real uncertainty over its abundance, and only half the carbon expected is found between the stars in its pure form. The rest is chemically bound in two main forms, grease-like (aliphatic) and mothball-like (aromatic).

The UNSW / Ege team used a laboratory to create material with the same properties as interstellar dust. They mimicked the process by which organic molecules are synthesised in the outflows of carbon stars, by expanding a carbon-containing plasma into a vacuum at low temperature. The material was collected and then analysed by a combination of techniques. Using magnetic resonance and spectroscopy (splitting light into its constituent wavelengths) they were able to determine how strongly the material absorbed light with a certain infrared wavelength, a marker for aliphatic carbon.

"Combining our lab results with observations from astronomical observatories allows us to measure the amount of aliphatic carbon between us and the stars", explained Professor Tim Schmidt, from the Australian Research Council Centre of Excellence in Exciton Science in the School of Chemistry at UNSW Sydney.

The researchers found that there are about 100 greasy carbon atoms for every million hydrogen atoms, accounting for between a quarter and a half of the available carbon. In the Milky Way Galaxy, this amounts to about 10 billion trillion trillion tonnes of greasy matter, or enough for 40 trillion trillion trillion packs of butter.

Schmidt is quick to dispel the comparison with anything edible: "This space grease is not the kind of thing you'd want to spread on a slice of toast! It's dirty, likely toxic and only forms in the environment of interstellar space (and our laboratory). It's also intriguing that organic material of this kind - material that gets incorporated into planetary systems - is so abundant."

The team now wants to determine the abundance of the mothball-like carbon, which will involve yet more challenging work in the laboratory. By firmly establishing the amount of each type of carbon in the dust, they will know precisely how much of this element is available to create life.
-end-
Media contacts

Dr Robert Massey
Royal Astronomical Society
Tel: +44 (0)20 7292 3979
Mob: +44 (0)7802 877 699
rmassey@ras.ac.uk

Dr Helen Klus
Royal Astronomical Society
Tel: +44 (0)20 7734 3307 x 115
hklus@ras.ac.uk

Science contact

Prof Tim Schmidt
University of New South Wales, Sydney
Australia
Mob: +61 439 386 109
timothy.schmidt@unsw.edu.au

Further information

The new work appears in "Aliphatic Hydrocarbon Content of Interstellar Dust", B. Günay, T. W. Schmidt, M. G. Burton, M. Af?ar, O. Krechkivska, K. Nauta, S. H. Kable and A. Rawal, Monthly Notices of the Royal Astronomical Society, Oxford University Press, in press. An advance copy of the paper is available at no charge from https://doi.org/10.1093/mnras/sty1582

Notes for editors

The Royal Astronomical Society (RAS, http://www.ras.ac.uk), founded in 1820, encourages and promotes the study of astronomy, solar-system science, geophysics and closely related branches of science. The RAS organizes scientific meetings, publishes international research and review journals, recognizes outstanding achievements by the award of medals and prizes, maintains an extensive library, supports education through grants and outreach activities and represents UK astronomy nationally and internationally. Its more than 4,000 members (Fellows), a third based overseas, include scientific researchers in universities, observatories and laboratories as well as historians of astronomy and others.

The RAS accepts papers for its journals based on the principle of peer review, in which fellow experts on the editorial boards accept the paper as worth considering. The Society issues press releases based on a similar principle, but the organisations and scientists concerned have overall responsibility for their content.

Twitter: https://twitter.com/royalastrosoc

Facebook: https://facebook.com/royalastrosoc

Instagram: https://www.instagram.com/royalastrosoc/

YouTube: https://www.youtube.com/user/RoyalAstroSoc/feed

Royal Astronomical Society

Related Carbon Articles from Brightsurf:

The biggest trees capture the most carbon: Large trees dominate carbon storage in forests
A recent study examining carbon storage in Pacific Northwest forests demonstrated that although large-diameter trees (21 inches) only comprised 3% of total stems, they accounted for 42% of the total aboveground carbon storage.

Carbon storage from the lab
Researchers at the University of Freiburg established the world's largest collection of moss species for the peat industry and science

Carbon-carbon covalent bonds far more flexible than presumed
A Hokkaido University research group has successfully demonstrated that carbon-carbon (C-C) covalent bonds expand and contract flexibly in response to light and heat.

Metal wires of carbon complete toolbox for carbon-based computers
Carbon-based computers have the potential to be a lot faster and much more energy efficient than silicon-based computers, but 2D graphene and carbon nanotubes have proved challenging to turn into the elements needed to construct transistor circuits.

Cascades with carbon dioxide
Carbon dioxide (CO(2)) is not just an undesirable greenhouse gas, it is also an interesting source of raw materials that are valuable and can be recycled sustainably.

Two-dimensional carbon networks
Lithium-ion batteries usually contain graphitic carbons as anode materials. Scientists have investigated the carbonic nanoweb graphdiyne as a novel two-dimensional carbon network for its suitability in battery applications.

Can wood construction transform cities from carbon source to carbon vault?
A new study by researchers and architects at Yale and the Potsdam Institute for Climate Impact Research predicts that a transition to timber-based wood products in the construction of new housing, buildings, and infrastructure would not only offset enormous amounts of carbon emissions related to concrete and steel production -- it could turn the world's cities into a vast carbon sink.

Investigation of oceanic 'black carbon' uncovers mystery in global carbon cycle
An unexpected finding published today in Nature Communications challenges a long-held assumption about the origin of oceanic black coal, and introduces a tantalizing new mystery: If oceanic black carbon is significantly different from the black carbon found in rivers, where did it come from?

First fully rechargeable carbon dioxide battery with carbon neutrality
Researchers at the University of Illinois at Chicago are the first to show that lithium-carbon dioxide batteries can be designed to operate in a fully rechargeable manner, and they have successfully tested a lithium-carbon dioxide battery prototype running up to 500 consecutive cycles of charge/recharge processes.

How and when was carbon distributed in the Earth?
A magma ocean existing during the core formation is thought to have been highly depleted in carbon due to its high-siderophile (iron loving) behavior.

Read More: Carbon News and Carbon Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.