Your brain with a migraine

June 27, 2018

When migraine sufferers see the tell-tale squiggly lines, light flashes and blind spots of a migraine aura, they prepare for a migraine. When researchers see the brain image of an aura, they try to figure out what causes it and if there is a way to stop the start of the migraine. Now an international team of researchers has identified the electrical activity specific to the start of migraines and demonstrated a way to stop it in animal experiments.

"Seizures and migraines are two very different states of the brain," said Steven J. Schiff, Brush Chair Professor of Engineering in the Departments of Neurosurgery, Engineering Science and Mechanics, and Physics, Penn State. "We found that the spreading depolarization, also called spreading depression, seen in migraines is a fundamental biophysical phenomenon and you can stop it with electrical current. Strangely, it is the opposite direction of electrical current used to turn off seizures."

Schiff, who is director of Penn State's Center for Neural Engineering, and his team have not cured migraines, but they are closer to understanding the mechanism in the brain that causes the start, or auras, of these headaches, which affect about 10 percent of men and 22 percent of women, according to the Center for Disease Control.

Carrying out experiments motivated by computational models of the biophysics of spreading depolarization, the researchers successfully demonstrated the modulation, suppression and prevention of spreading depolarization in rat brain slices. They reported their results in a recent issue of Scientific Reports.

"The electrical activity in the brain causing the aura is like a rolling blackout," said Andrew J. Whalen, postdoctoral scholar, Center for Neural Engineering, Penn State. "It's not just a single cell, but a chain reaction that moves across the brain causing swelling, and it takes people a while to recover."

Many migraine sufferers first experience this visual aura before the headache begins. Schiff and his team targeted the electrical activity that causes the aura as it is fundamental in starting the migraine.

Researchers know that changing the salt concentration in the brain can alter the electrical processes of the brain. By altering the potassium concentrations in the brain, the researchers could trigger spreading depolarization. The brain cells involved have a central body called the soma and a long, antenna-like arm called the dendrite. The two ends allow the researchers to polarize the cells with an electrical current -- positive charges accumulate at one end and negative charges accumulate at the other. This allows them to use an electrical current to try to modulate brain cell activity.

"We thought that if we stopped the initial phase, the aura, we would stop the rest," said Schiff. "We finally figured out that the charge necessary to stop the spreading depression was opposite to what we assumed. Once we chose the opposite charge, the progression of the phenomena stopped. This all made sense in the end, since seizures and migraines start at opposite ends of the brain cells."

The researchers were able to use a positive charge to stop the spreading polarization. Imaging of the rat brain slices shows the migraine activity moving deeper into the brain where it can no longer propagate, effectively ending the episode.

"We came up with a biophysical understanding and it applies to the fundamental physiology of the aura, and we can make it worse with one current and we can make it better with the opposite current," said Schiff.

Applying polarization such as this can be safely done in the human brain, and this strategy can be tested in clinical trials with migraine sufferers. However, the full migraine experienced by patients becomes more complicated after the initial aura.

"One wants to be able to fix the brain so that it is not susceptible to migraines or seizures," said Bruce J. Gluckman, professor of engineering science and mechanics, neurosurgery and bioengineering and associate director of the Center for Neural Engineering. "Not to have to control migraines or spreading depression once it starts. For now, this is a fundamental result that moves us closer to being able to intervene in an important way for this condition."
-end-
Also working on this project were Ying Xiao, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Herve Kadji, postdoctoral fellow in the Center for Neural Engineering, Penn State; and Markus Dahlem, senior researcher, Humboldt University of Berlin, Germany.

The U.S.-German collaborative Research in Computational Neuroscience program: National Institutes of Health; the Bundesministerium für Bildung und Forschung; and the National Institutes of Health BRAIN Initiative supported this work. The researchers have filed for a provisional patent on this work.

Penn State

Related Migraine Articles from Brightsurf:

Disparities in migraine by sexual orientation
Survey data were used to examine the association between sexual orientation (exclusively heterosexual, mostly heterosexual, lesbian, gay or bisexual) and migraine.

Can you paint your migraine?
'Can you draw me a picture of your headache?' may sound like an unusual question - but drawings of headache pain provide plastic surgeons with valuable information on which patients are more or less likely to benefit from surgery to alleviate migraine headaches.

Acupuncture can reduce migraine headaches
Acupuncture can reduce migraine headaches compared to both sham (placebo) acupuncture and usual care, finds a new trial from China published by The BMJ today.

Migraine rats, medical facts
Migraine mechanisms are still far from being fully understood. Escalating data from animal models are 'fact-checking' the neurophysiological and behavioral correlates of the migraine experience in humans, and how they may be affected by current anti-migraine drugs or might translate into new therapies.

Connecting the dots in the migraine brain
This dMRI study pointed to the structural strengthening of connections involving subcortical regions associated with pain processing and weakening in connections involving cortical regions associated with hyperexcitability may coexist in migraine.

Predictors of chronic migraine
A review and meta-analysis found predictors of chronic migraine. Depression, high frequency attacks, medication overuse and allodynia increased the chances for new onset chronic migraine, while annual income -- US$ 50,000 showed a protective effect.

On nitroglycerin, cardiovascular homeostasis and...bam, migraine!
Researchers in Leiden, The Netherlands, found an exaggerated cardiovascular response to nitroglycerin infusion in migraine patients, suggesting an elevated systemic sensitivity to this compound in this population.

All roads lead to migraine
Dr. Samaira Younis, from the Danish Headache Center in Copenhagen, Denmark, shares her research results, which suggests there are no differences between migraine attacks clinical characteristics following administration of 2 different compounds in patients, CGRP and sildenafil, meaning they share common cellular signaling pathways.

Running away from exercise: The curious case of migraine
In spite of the widespread recommendation for regular physical activity as a strategy to manage migraine, for some patients, exercise can instead trigger migraine attacks.

Migraine prevention in children and adolescents
Two medicines already used to prevent migraine in adults also showed efficacy in adolescents with migraine.

Read More: Migraine News and Migraine Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.