Nav: Home

Your brain with a migraine

June 27, 2018

When migraine sufferers see the tell-tale squiggly lines, light flashes and blind spots of a migraine aura, they prepare for a migraine. When researchers see the brain image of an aura, they try to figure out what causes it and if there is a way to stop the start of the migraine. Now an international team of researchers has identified the electrical activity specific to the start of migraines and demonstrated a way to stop it in animal experiments.

"Seizures and migraines are two very different states of the brain," said Steven J. Schiff, Brush Chair Professor of Engineering in the Departments of Neurosurgery, Engineering Science and Mechanics, and Physics, Penn State. "We found that the spreading depolarization, also called spreading depression, seen in migraines is a fundamental biophysical phenomenon and you can stop it with electrical current. Strangely, it is the opposite direction of electrical current used to turn off seizures."

Schiff, who is director of Penn State's Center for Neural Engineering, and his team have not cured migraines, but they are closer to understanding the mechanism in the brain that causes the start, or auras, of these headaches, which affect about 10 percent of men and 22 percent of women, according to the Center for Disease Control.

Carrying out experiments motivated by computational models of the biophysics of spreading depolarization, the researchers successfully demonstrated the modulation, suppression and prevention of spreading depolarization in rat brain slices. They reported their results in a recent issue of Scientific Reports.

"The electrical activity in the brain causing the aura is like a rolling blackout," said Andrew J. Whalen, postdoctoral scholar, Center for Neural Engineering, Penn State. "It's not just a single cell, but a chain reaction that moves across the brain causing swelling, and it takes people a while to recover."

Many migraine sufferers first experience this visual aura before the headache begins. Schiff and his team targeted the electrical activity that causes the aura as it is fundamental in starting the migraine.

Researchers know that changing the salt concentration in the brain can alter the electrical processes of the brain. By altering the potassium concentrations in the brain, the researchers could trigger spreading depolarization. The brain cells involved have a central body called the soma and a long, antenna-like arm called the dendrite. The two ends allow the researchers to polarize the cells with an electrical current -- positive charges accumulate at one end and negative charges accumulate at the other. This allows them to use an electrical current to try to modulate brain cell activity.

"We thought that if we stopped the initial phase, the aura, we would stop the rest," said Schiff. "We finally figured out that the charge necessary to stop the spreading depression was opposite to what we assumed. Once we chose the opposite charge, the progression of the phenomena stopped. This all made sense in the end, since seizures and migraines start at opposite ends of the brain cells."

The researchers were able to use a positive charge to stop the spreading polarization. Imaging of the rat brain slices shows the migraine activity moving deeper into the brain where it can no longer propagate, effectively ending the episode.

"We came up with a biophysical understanding and it applies to the fundamental physiology of the aura, and we can make it worse with one current and we can make it better with the opposite current," said Schiff.

Applying polarization such as this can be safely done in the human brain, and this strategy can be tested in clinical trials with migraine sufferers. However, the full migraine experienced by patients becomes more complicated after the initial aura.

"One wants to be able to fix the brain so that it is not susceptible to migraines or seizures," said Bruce J. Gluckman, professor of engineering science and mechanics, neurosurgery and bioengineering and associate director of the Center for Neural Engineering. "Not to have to control migraines or spreading depression once it starts. For now, this is a fundamental result that moves us closer to being able to intervene in an important way for this condition."
-end-
Also working on this project were Ying Xiao, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China; Herve Kadji, postdoctoral fellow in the Center for Neural Engineering, Penn State; and Markus Dahlem, senior researcher, Humboldt University of Berlin, Germany.

The U.S.-German collaborative Research in Computational Neuroscience program: National Institutes of Health; the Bundesministerium für Bildung und Forschung; and the National Institutes of Health BRAIN Initiative supported this work. The researchers have filed for a provisional patent on this work.

Penn State

Related Migraine Articles:

Both too much, too little weight tied to migraine
Both obesity and being underweight are associated with an increased risk for migraine, according to a meta-analysis published in the April 12, 2017, online issue of Neurology®, the medical journal of the American Academy of Neurology.
Examining whether migraine is associated with cervical artery dissection
A new study published online by JAMA Neurology examines whether a history of migraine is associated with cervical artery dissection (CEAD), a frequent cause of ischemic (blood vessel-related) stroke in young and middle-age adults, although the causes leading to vessel damage are unclear.
Migraine associated with higher risk of stroke after surgery
Surgical patients with a history of migraines have a greater risk of stroke and readmission to hospital, finds a study published by The BMJ today.
Migraine as a risk marker for stroke and heart attack
A team of researchers led by Professor Tobias Kurth, Head of the Institute of Public Health at Charité -- Universitätsmedizin Berlin, has now been able to establish the following: female migraine patients have a higher risk of stroke or heart attacks than women without migraine.
Are drops in estrogen levels more rapid in women with migraine?
Researchers have long known that sex hormones such as estrogen play a role in migraine.
Migraine drugs underused
New research shows that more migraines could be safely treated with drugs that are known to constrict blood vessels.
Managing migraine during pregnancy and lactation
According to doctors at Wake Forest Baptist Medical Center, medications and treatments long considered safe to treat pregnant women with migraines may not be.
Children who are emotionally abused may be more likely to experience migraine as adults
Children who are emotionally abused may be more likely to experience migraines as young adults, according to a preliminary study released today that will be presented at the American Academy of Neurology's 68th Annual Meeting in Vancouver, Canada, April 15 to 21, 2016.
Migraine triggers may all act through a common pathway
Migraines can be triggered by a variety of factors, including stress, sleep disruption, noise, odors, and diet.
A new marker for migraine?
Researchers may have discovered a new marker found in the blood for episodic migraine, according to a study published in the Sept.

Related Migraine Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".