Nav: Home

A milestone on the path towards efficient solar cells

June 27, 2018

Generating more electricity from solar cells and conducting further research into so-called singlet fission. This is what scientists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) are currently working on as part of a joint research project conducted in collaboration with Argonne-Northwestern Solar Energy Research (ANSER) Center at Northwestern University in Evanston, USA. Singlet fission could considerably boost the efficiency of solar cells - and thanks to the latest research it is one step closer to becoming possible. The findings have been published in the scientific journal 'Chem'*.

Global energy consumption has rocketed, and the upward trend is set to continue over the coming years. In a bid to meet demand whilst protecting the environment, electricity from the renewable energy sources solar, wind, water and biomass is gaining in importance. However, only approximately six percent of the gross electricity produced in Germany in 2017 came from photovoltaic systems and the technology we currently have available - based on silicon - is rapidly reaching its limits in terms of potential.

Generating more electricity from solar cells

Solar cells are extremely inefficient at converting solar energy to electricity. Their efficiency currently lies at just 20 to 25 percent. New approaches are called for to significantly increase the performance of solar cells and generate more electricity. The answer may be found in physical-chemical processes which significantly boost the efficiency of solar cells. Scientists at FAU and the ANSER Center have been exploring a promising approach as part of their joint research project within the Emerging Fields Initiative (EFI) 'Singlet fission in novel organic materials - an approach towards highly-efficient solar cells'. The researchers investigated the so-called singlet fission (SF) mechanism, in which one photon excites two electrons.

Gaining a better understanding of singlet fission

The principle of singlet fission was discovered roughly fifty years ago now, but its potential for significantly increasing the efficiency of organic solar cells was only recognised by scientists in the USA just under ten years ago. Since then, researchers across the globe have been working on gaining a more detailed understanding of the fundamental processes and complex mechanisms behind it. Together with Prof. Michael Wasielewski from the ANSER Center, the researchers from FAU - Prof. Dr. Dirk Guldi from the Chair of Physical Chemistry I, Prof. Rik Tykwinski from the Chair of Organic Chemistry I (since moved to University of Alberta, Canada), Prof. Dr. Michael Thoss from the Chair of Theoretical Solid State Physics (since moved to Albert-Ludwigs-Universität Freiburg) and Prof. Dr. Tim Clark from the Computer Chemistry Center (CCC) have now managed to clarify some extraordinarily significant aspects of SF.

Detailed insights into the process

When a photon from sunlight meets and is absorbed by a molecule, the energy level of one of the electrons in the molecule is increased. By absorbing a photon, an organic molecule is therefore converted into a state of higher energy. Electricity can then be generated within solar cells from this energy which is stored temporarily within the molecule. The optimal scenario in conventional solar cells is that each photon generates one electron as a carrier for the electricity. If, however, dimers from selected chemical compounds are used, two electrons from neighbouring molecules can be converted into a state of higher energy. In total, one photon generates two excited electrons, which in turn can be used to produce electrical current - two are made out of one. This process is known as SF and in the ideal scenario can considerably boost the performance of solar cells. Chemists and physicists at FAU and the ANSER Center have investigated the underlying mechanism in more detail, leading to a considerably more extensive understanding of the SF process.

Three important findings

As the first step in their research, the scientists produced a molecular dimer from two pentacene units. This hydrocarbon is considered to be a promising candidate for using singlet fission in solar cells. They then exposed the liquid to light and used various spectroscopic methods to investigate the photophysical processes within the molecule.

This gave the researchers three far-reaching insights into the mechanism behind intra-molecular singlet fission. Firstly, they succeeded in proving that coupling to a higher charge transfer state is essential for highly efficient SF. Secondly, they verified a model for singlet fission they recently created and published (doi:10.1038/ncomms15171). Thirdly (and lastly), they proved that SF efficiency clearly correlates to how strongly the two pentacene sub-units are coupled.

The researchers' findings indicate the importance of carefully planning the design of SF materials. This is an important milestone on the way towards using SF-based photovoltaic systems to generate electricity. Further basic research is still required, however.

University of Erlangen-Nuremberg

Related Solar Cells Articles:

Solar cells more efficient thanks to new material standing on edge
Researchers from Lund University in Sweden and from Fudan University in China have successfully designed a new structural organization using the promising solar cell material perovskite.
Printable solar cells just got a little closer
A University of Toronto Engineering innovation could make printing solar cells as easy and inexpensive as printing a newspaper.
A big nano boost for solar cells
Solar cells convert light into electricity. While the sun is one source of light, the burning of natural resources like oil and natural gas can also be harnessed.
Game changer for organic solar cells
Researchers develop a simple processing technique that could cut the cost of organic photovoltaics and wearable electronics.
Physics, photosynthesis and solar cells
A University of California, Riverside assistant professor has combined photosynthesis and physics to make a key discovery that could help make solar cells more efficient.
Throwing new light on printed organic solar cells
Researchers at the University of Surrey have achieved record power conversion efficiencies for large area organic solar cells.
A new way to image solar cells in 3-D
Berkeley Lab scientists have developed a way to use optical microscopy to map thin-film solar cells in 3-D as they absorb photons.
Toward 'greener,' inexpensive solar cells
Solar panels are proliferating across the globe to help reduce the world's dependency on fossil fuels.
A new technique opens up advanced solar cells
Using a novel spectroscopic technique, EPFL scientists have made a much-needed breakthrough in cutting-edge photovoltaics.
OU physicists developing new systems for next generation solar cells
University of Oklahoma physicists are developing novel technologies with the potential to impact utility-scale energy generation, increase global energy capacity and reduce dependence on fossil fuels by producing a new generation of high efficiency solar cells.

Related Solar Cells Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".