Nav: Home

Lipid species offer insights into metabolic health

June 27, 2018

Heart disease is the number one killer in the United States, and high triglyceride levels in the blood are cited as just one of several risk factors. Millions of lipid panels, blood tests that look at cholesterol levels as well as triglycerides, are performed in clinics each year.

Two new Morgridge Institute for Research studies suggest the current tests, which measure the abundance of lipid classes, are insufficient. Rather, lipids identified and studied at the individual species level--instead of grouped in classes--may be better signatures of metabolic health.

The results were published online June 13, 2018, in Cell Systems as open access papers, one focusing on plasma lipid species and the second on liver lipid species.

Lipids, or fats, are incredibly important to human health, yet one of the hardest biomolecules to study. Harnessing advances in mass spectrometry technology, Morgridge scientists measured almost 150 lipid species in the blood and liver of mice and identified some that can act as signatures of healthy or unhealthy metabolic states.

For patients getting a lipid panel--something the American Heart Association suggests for everyone over the age of 20--results will include a reference to triglyceride levels. These tests look at triglycerides in bulk, as a group, and measure how much is in the blood.

But Molly McDevitt, a graduate student in Dave Pagliarini's Lab at Morgridge and co-first author on the papers, says looking at individual species of triglycerides provides a much more accurate picture.

"We don't even know how many different triglycerides there are--hundreds, thousands," says McDevitt. "We found that some triglycerides correlate positively with a fatty liver, while others correlate negatively with a fatty liver. Lumping all triglycerides into one class masks these subtler associations."

In this study, the scientists identified seven triglyceride species in the blood that associated with either healthy or fatty liver.

Non-alcoholic fatty liver disease (NAFLD)--a disease in which the liver gets fat and cells start dying, eventually leading to organ failure--was a focus in this work, though the results also impact other diseases related to lipid metabolism like diabetes, obesity and metabolic syndrome.

The work was co-led by Johan Auwerx's team from EPFL in Switzerland, and Morgridge affiliate and University of Wisconsin-Madison professor Josh Coon contributed expertise in mass spectrometry to the studies.

Identifying biomarkers for disease

One of the questions posed across the two papers: does measuring the lipids in plasma (a simple blood test) tell you something about what's happening in an organ? Often, in order to identify a fatty liver, an invasive liver biopsy is required. Taking a blood sample would be a much simpler way to diagnose it.

The studies are still in the early stages, but the results look promising.

"As we move from measuring a bulk lipid class in serum to specific lipids, we're finding that some do indeed predict what's happening in the liver," says Dave Pagliarini, director of the Morgridge Metabolism Theme. "That gives us confidence that we might be able to discover biomarkers in plasma that report on what's happening in organ metabolism."

Using multi-omics approaches to further discovery

By combining lipids data with other biomedical datasets, an approach known as multi-omics, the scientists were able to identify and prioritize sets of genes they know are causing the changes in lipid levels.

"We might find a location on the DNA that contains 400 genes, and it would be really hard to follow up on all of those," McDevitt says. "By using the different layers of the multi-omic approach, like the phenotypes and the gene expression levels, it helps us narrow down that list to something much easier to handle."

Future work will investigate regions of the genome the team found linked to the various lipids. The goal is to identify the genes responsible for lipid changes and uncover the mechanisms of how they do what they do.

"This is really a jumping-off point," Pagliarini says. "These large-scale studies now provide us and others in the community the opportunity to prioritize these genes for new mechanistic insights."
-end-


Morgridge Institute for Research

Related Mass Spectrometry Articles:

Study shows that a high protein intake in early childhood is associated with higher body fat mass but not higher lean mass
New research presented at this year's European Congress on Obesity (ECO) in Porto, Portugal, May 17-20, shows that a high intake of protein in early childhood, particularly from animal food sources, is associated with a higher body mass index (BMI) due to increased body fat and not increases in fat-free mass.
Triboelectric nanogenerators boost mass spectrometry performance
Triboelectric nanogenerators (TENG) convert mechanical energy harvested from the environment to electricity for powering small devices such as sensors or for recharging consumer electronics.
'Corrective glass' for mass spectrometry imaging
Researchers at the Max Planck Institute for Chemical Ecology in Jena, Germany, have now improved mass spectrometry imaging in such a way that the distribution of molecules can also be visualized on rippled, hairy, bulgy or coarse surfaces.
How to decrease the mass of aircrafts
Members of the Department of Chemistry of Lomonosov Moscow State University have created unique polymer matrices for polymer composites based on novel phthalonitrile monomers.
Mass insect migrations in UK skies
For the first time, scientists have measured the movements of high-flying insects in the skies over southern England -- and found that about 3.5 trillion migrate over the region every year.
Immunotherapy for cancer: New method identifies target antigens by mass spectrometry
New cancer therapies harness the immune system to fight tumors.
Rapid and mass production of graphene, using microwaves
An international team of researchers, affiliated with UNIST has discovered a simple new method for producing large quantities of the promising nanomaterial graphene.
New method helps identify antibiotics in mass spectrometry datasets
An international team of computer scientists has for the first time developed a method to find antibiotics hidden in huge but still unexplored mass spectrometry datasets.
A fundamental theory of mass generation
A team of four theoretical physicists, Francesco Sannino from Cp3-Origins at the University of Southern Denmark, Alessandro Strumia from CERN theory division and Pisa Univ., Andrea Tesi from the Enrico Fermi Institute at the University of Chicago in US, and Elena Vigiani from Pisa University have recently published in the Journal of High Energy Physics their work
Quantum leap in the reliability of mass spectrometry-based proteomics
Modern mass spectrometry systems enable scientists to routinely determine the quantitative composition of cells or tissue samples.

Related Mass Spectrometry Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Changing The World
What does it take to change the world for the better? This hour, TED speakers explore ideas on activism—what motivates it, why it matters, and how each of us can make a difference. Guests include civil rights activist Ruby Sales, labor leader and civil rights activist Dolores Huerta, author Jeremy Heimans, "craftivist" Sarah Corbett, and designer and futurist Angela Oguntala.
Now Playing: Science for the People

#521 The Curious Life of Krill
Krill may be one of the most abundant forms of life on our planet... but it turns out we don't know that much about them. For a create that underpins a massive ocean ecosystem and lives in our oceans in massive numbers, they're surprisingly difficult to study. We sit down and shine some light on these underappreciated crustaceans with Stephen Nicol, Adjunct Professor at the University of Tasmania, Scientific Advisor to the Association of Responsible Krill Harvesting Companies, and author of the book "The Curious Life of Krill: A Conservation Story from the Bottom of the World".