Nav: Home

Nature: Tricky feat with stand-up molecule

June 27, 2018

For quite a while now, researchers have been able to produce structures from single atoms. One of the first examples was presented by D. M. Eigler and E. K. Schweizer in 1990 in Nature: a tiny IBM logo formed from just a few xenon atoms was produced with a scanning probe microscope. But even today, almost 30 years later, we are still a long way from fabricating nanostructures directly from complex molecules. Although molecules are much bigger than atoms, they are much more difficult to control. "With atoms, the orientation is not important. But molecules have a specific shape. For example, the orientation in which they adhere to a surface or to the tip of the microscope is important," says Prof. Stefan Tautz, institute head at Forschungszentrum Jülich.

In the peer-reviewed journal Nature, the group headed by Dr. Ruslan Temirov at Tautz's institute now present a new breakthrough experiment in which they successfully oriented a platelet-shaped PTCDA molecule, which is structurally related to graphene, as desired. To do so, the researchers used the tip of a scanning probe microscope to attach two silver atoms to the edges of the molecule, which they then lifted up until it stood upright on the tiny "silver platform".

"Until now, it was assumed that the molecule would revert back to its favoured position and lie flat on the surface. But that is not the case. The molecule is surprisingly stable in the upright orientation. Even when we push it with the tip of the microscope, it does not fall over; it simply swings back up again. We can only speculate as to the reason for this," says Dr. Taner Esat, first author of the study.

The work is an important step in the development of new production techniques with single molecules. Over the course of history, humans have learnt how to control the world on ever-smaller scales. The ultimate goal is to be able to fabricate arbitrary molecular architectures. This would involve assembling nanostructures directly from single molecules, a bit like Lego. The application potential would be unlimited. Nanoelectronics, in particular, would profit from the completely new possibilities of realizing basic functionalities, such as logic, memory, sensor, and amplifier circuits.

"In the macroscopic world, production processes are very sophisticated. On a smaller level, we're not yet quite as advanced. Nature is way ahead of us there," explains Stefan Tautz. In living cells, molecules form up following the self-assembly mechanism, according to their molecular properties. Researchers at Jülich's Peter Grünberg Institute (PGI-3) are aiming to go beyond this natural paradigm. With their research, they are hoping to pioneer a fabrication technology that is not limited to a few predetermined structures, but will enable the essentially free creation of structures on the nanoscale.

"Take cars, computers, and houses, for example. Because nature does not create them spontaneously, all of these things have to be assembled by us - either manually or using machines. And that is exactly what we have done at the level of single molecules in this experiment: with our hands, we produced an artificial metastable structure that additionally offers a certain desired functionality," says Stefan Tautz.

The researchers already successfully used the stand-up molecule as an electron source emitting single electrons. The electron's wave function of this sort of electron source is predetermined by the chemical properties of the molecule. Such electron sources could be used, for example, for applications in holography, which use the wave character of the emitted electrons for imaging. Thanks to experiments like this, researchers are now anticipating a productive interplay between the fabrication of unusual structures and new functionalities.

Hand control and probes for microscopes

The current research result was preceded by several scientific advances. Over the last few years, e.g., Jülich researchers succeeded in selectively plucking single molecules from aggregates and layers. The group headed by Dr. Ruslan Temirov is also working to improve the contrast and resolution of microscopes using single atoms and molecules as probes. For this purpose, individual molecules or atoms are attached as a sensor to the tip of the microscope. These then dramatically enhance the resolution with which structures and even electric fields can be imaged.
-end-


Forschungszentrum Juelich

Related Microscope Articles:

Novel high-speed microscope captures brain neuroactivities
A research team led by Dr. Kevin Tsia from the University of Hong Kong (HKU); and Professor Ji Na, from the University of California, Berkeley (UC Berkeley) has successfully recorded the millisecond electrical signals in the neurons of an alert mouse with their super high-speed microscope - two-photon fluorescence microscope.
Graphene forms under microscope's eye
Scientists record the formation of foamy laser-induced graphene made with a small laser mounted to a scanning electron microscope.
Hybrid microscope could bring digital biopsy to the clinic
By adding infrared capability to the ubiquitous, standard optical microscope, researchers at the University of Illinois at Urbana-Champaign hope to bring cancer diagnosis into the digital era.
An ultrafast microscope for the quantum world
Processes taking place inside tiny electronic components or in molecules can now be filmed at a resolution of a few hundred attoseconds and down to the individual atom.
SLAP microscope smashes speed records
A new 2-photon microscope captures videos of the brain faster than ever, revealing voltage changes and neurotransmitter release.
New 3D microscope visualises fast biological processes better than ever
Researchers from the European Molecular Biology Laboratory (EMBL) in Heidelberg have combined their expertise to develop a new type of microscope.
Use a microscope as a shovel? UConn researchers dig it
Using a familiar tool in a way it was never intended to be used opens up a whole new method to explore materials, report UConn researchers.
New method gives microscope a boost in resolution
Scientists at the University of Würzburg have been able to boost current super-resolution microscopy by a novel tweak.
Microscope measures muscle weakness
Biotechnologists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have developed a system to accurately measure muscle weakness caused by structural changes in muscle tissue.
New microscope offers 4D look at embryonic development in living mice
With the development of an adaptive, multi-view light sheet microscope and a suite of computational tools, researchers have captured the first view of early organ development inside the mouse embryo.
More Microscope News and Microscope Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.