Nav: Home

Study yields a new scale of earthquake understanding

June 27, 2018

CHAMPAIGN, Ill. -- Nanoscale knowledge of the relationships between water, friction and mineral chemistry could lead to a better understanding of earthquake dynamics, researchers said in a new study. Engineers at the University of Illinois at Urbana-Champaign used microscopic friction measurements to confirm that, under the right conditions, some rocks can dissolve and may cause faults to slip.

The study, published in the journal Nature Communications, closely examines how water and calcite - a mineral that is very common in the Earth's crust - interact at various pressures and groundwater compositions to influence frictional forces along faults.

"Water is everywhere in these systems," said Rosa Espinosa-Marzal, a civil and environmental engineering professor and co-author of the study. "There is water on the surface of minerals and in the pore spaces between mineral grains in rocks. This is especially true with calcite-containing rocks because of water's affinity to the mineral."

According to the researchers, other studies have correlated the presence of water with fault movement and earthquakes, but the exact mechanism remained elusive. This observation is particularly prevalent in areas where fracking operations are taking place - a process that involves a lot of water.

The study focuses on calcite-rich rocks in the presence of brine - naturally occurring salty groundwater - along fault surfaces. The rock surfaces that slide past each other along faults are not smooth. The researchers zoomed in on the naturally occurring tiny imperfections or unevenness on rocks' surfaces, called asperities, at which friction and wear originate when the two surfaces slide past each other.

"The chemical and physical properties of faulted rocks and mechanical conditions in these systems are variable and complex, making it difficult to take every detail into account when trying to answer these types of questions," Espinosa-Marzal said. "So, to help understand water's role in fault dynamics, we looked at a scaled-down, simplified model by examining single asperities on individual calcite crystals."

For the experiments, the team submerged calcite crystals in brine solutions at various concentrations and subjected them to different pressures to simulate a natural fault setting. Once the crystals were in equilibrium with the solution, they used an atomic force microscope to drag a tiny arm with a silicon tip - to simulate the asperity - across the crystal to measure changes in friction.

In most of the experiments, the researchers first found what they expected: As the pressure applied on the crystals increased, it became more difficult to drag the tip across the crystal's surface. However, when they increased pressure to a certain point and the tip was moved slowly enough, the tip began to slide more easily across the crystal.

"This tells us that something has happened to this tiny asperity under higher pressures that caused a decrease in friction," said graduate student and co-author Yijue Diao. "The atomic force microscope also allows us to image the crystal surface, and we can see that the groove increased in size, confirming that calcite had dissolved under pressure. The dissolved mineral and water acted as a good lubricant, thereby causing the observed weakening of the single-asperity contact."

"This shows that studies such as these warrant serious consideration in future work," Espinosa-Marzal said. The researchers acknowledge that there are still many questions to address related to this research. However, their work demonstrates that certain brine-calcite interactions, under applied stress, induce dissolution and decrease the frictional strength at the single-asperity scale.

"Our research also suggests that it might be possible to mitigate earthquake risk by purposely changing brine compositions in areas that contain calcite-rich rocks. This consideration could be beneficial in areas where fracking is taking place, but this concept requires much more careful investigation," Espinosa-Marzal said.

"As a young scientist who works at the nanoscale, I never thought that earthquake dynamics would be the type of thing I would be researching," Diao said. "However, we have learned so much about things at the macroscale that nanoscale studies like ours can reveal new critical insights into many large-scale natural phenomena."
The National Science Foundation supported this study.

Editor's notes:

To reach Rosa Espinosa-Marzal, call 217-300-4380;

The paper "The role of water in fault lubrication" is available online and from the U. of I. News Bureau. DOI: 10.1038/s41467-018-04782-9

University of Illinois at Urbana-Champaign

Related Nanoscale Articles:

Information storage with a nanoscale twist
Discovery of a novel rotational force inside magnetic vortices makes it easier to design ultrahigh capacity disk drives.
Researchers use acoustic waves to move fluids at the nanoscale
A team of mechanical engineers at the University of California San Diego has successfully used acoustic waves to move fluids through small channels at the nanoscale.
Core technology springs from nanoscale rods
Rice University scientists have demonstrated a method for reversibly changing the light emitted from metallic nanorods by moving atoms from one place to another inside the particles.
Tooth decay -- drilling down to the nanoscale
With one in two Australian children reported to have tooth decay in their permanent teeth by age 12, researchers from the University of Sydney believe they have identified some nanoscale elements that govern the behavior of our teeth.
Beating the heat a challenge at the nanoscale
A little heat from a laser can disrupt measurements of materials at the nanoscale, according to Rice University scientists.
New nanoscale technologies could revolutionize microscopes, study of disease
Research completed through a collaboration with University of Missouri engineers, biologists, and chemists could transform how scientists study molecules and cells at sub-microscopic (nanoscale) levels.
New tool allows scientists to visualize 'nanoscale' processes
Chemists at UC San Diego have developed a new tool that allows scientists for the first time to see, at the scale of five billionths of a meter, 'nanoscale' mixing processes occurring in liquids.
Heat and light get larger at the nanoscale
In a new study recently published in Nature Nanotechnology, researchers from Columbia Engineering, Cornell, and Stanford have demonstrated heat transfer can be made 100 times stronger than has been predicted, simply by bringing two objects extremely close -- at nanoscale distances -- without touching.
Revealing the ion transport at nanoscale
EPFL researchers have shown that a law of physics having to do with electron transport at nanoscale can also be analogously applied to the ion transport.
Systems analysis -- from the nanoscale to the global
Two major research grants were announced today by the Engineering and Physical Sciences Research Council.

Related Nanoscale Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".