Nav: Home

Summer dead zones in Chesapeake Bay breaking up earlier

June 27, 2018

SOLOMONS, MD (June 27, 2018)--A new study shows that dead zones in the lower Chesapeake Bay are beginning to break up earlier in the fall, which may be an indication that efforts to reduce nutrient pollution to the Bay are beginning to make an impact. Scientists from the University of Maryland Center for Environmental Science examined 30 years of data on dead zones and nutrient levels in the Chesapeake Bay. They found that dead zones in the lower part of the Chesapeake Bay, the saltier part from the Potomac River south, are getting smaller in the late summer thanks to a late-season replenishment of oxygen, a natural response to decreasing nutrient pollution.

"This study shows that water quality monitoring programs that have been in place for decades are beginning to reveal fundamental information on the nature of change associated with the Chesapeake Bay's dead zones," said Peter Goodwin, president of the University of Maryland Center for Environmental Science. "These areas are beginning to undergo recovery from eutrophication, and even more exciting, natural responses to cleaning the water are kicking in."

Dead zones, areas of low to no oxygen that choke off life in the Bay, typically start growing in late May and dissipate in the fall. Studies in the past decade have shown that the size of the dead zone changes throughout the summer, growing larger in June and smaller in August. Jeremy Testa and his team, including UMCES Professors Emeriti Walter Boynton and Michael Kemp, set out to understand what was happening late in the season. They found that a complex chemical process was kicking in, allowing the Bay to begin cleaning itself.

"The size of low-oxygen water in the dead zone has been getting smaller at end of summer. Reoxygenation has allowed for a conversion of nitrogen in late summer to a form that is more amenable to being removed by natural processes," said Jeremy Testa, assistant professor at the University of Maryland Center for Environmental Science's Chesapeake Biological Laboratory. "We envision that this is how the Bay would've typically functioned before dead zones were such a severe problem."

In the spring and early summer, algae in the Chesapeake Bay feed on the nitrogen-rich runoff that comes off the land and typically reach high densities. Eventually these algae die and sink to the Bay's deep waters. As they decompose, a form of bioavailable nitrogen called ammonium is created. This ammonium accumulates in the bottom waters throughout the summer where there is little to no oxygen, in the so-called dead zones. When there is no oxygen around, ammonium persists and could feed more algae. However, if some oxygen begins to be added to the system, ammonium can undergo a process that eventually turns it into a form that can be converted to nitrogen gas and permanently removed from the Bay . While this process typically happens in the fall as storms and winds churn up the waters, this new analysis indicates that the process is happening earlier and at higher rates.

The research of Testa and his team supports previous studies that have shown late-summer dead zones to be getting smaller and breaking up earlier in the year. "This decline in the late summer hypoxic volumes corresponds to a long-term and modest nitrogen loading decline." said Testa. "The improved oxygen conditions appear to allow additional production of nitrogen forms that can be readily removed from the Bay, which we call a negative feedback. It's an important element of recovery."
-end-
The paper "Season-specific trends and linkages of nitrogen and oxygen cycles in Chesapeake Bay" by Jeremy Testa, Michael Kemp, and Walter Boynton was published in Limnology and Oceanography.

UNIVERSITY OF MARYLAND CENTER FOR ENVIRONMENTAL SCIENCE

The University of Maryland Center for Environmental Science leads the way toward better management of Maryland's natural resources and the protection and restoration of the Chesapeake Bay. From a network of laboratories located across the state, UMCES scientists provide sound evidence and advice to help state and national leaders manage the environment, and prepare future scientists to meet the global challenges of the 21st century. http://www.umces.edu

University of Maryland Center for Environmental Science

Related Nitrogen Articles:

Fixing the role of nitrogen in coral bleaching
A unique investigation highlights how excess nitrogen can trigger coral bleaching in the absence of heat stress.
Universities release results on nitrogen footprints
Researchers have developed a large-scale method for calculating the nitrogen footprint of a university in the pursuit of reducing nitrogen pollution, which is linked to a cascade of negative impacts on the environment and human health, such as biodiversity loss, climate change, and smog.
A battery prototype powered by atmospheric nitrogen
As the most abundant gas in Earth's atmosphere, nitrogen has been an attractive option as a source of renewable energy.
Northern lakes respond differently to nitrogen deposition
Nitrogen deposition caused by human activities can lead to an increased phytoplankton production in boreal lakes.
Researchers discover greenhouse bypass for nitrogen
An international team discovers that production of a potent greenhouse gas can be bypassed as soil nitrogen breaks down into unreactive atmospheric N2.
Bacterial mechanism converts nitrogen to greenhouse gas
Cornell University researchers have discovered a biological mechanism that helps convert nitrogen-based fertilizer into nitrous oxide, an ozone-depleting greenhouse gas.
Going against the grain -- nitrogen turns out to be hypersociable!
Nitrogen is everywhere: even in the air there is four times as much of it as oxygen.
Soybean nitrogen breakthrough could help feed the world
Washington State University biologist Mechthild Tegeder has developed a way to dramatically increase the yield and quality of soybeans.
Trading farmland for nitrogen protection
Excess nitrogen from agricultural runoff can enter surface waters with devastating effects.
Measure of age in soil nitrogen could help precision agriculture
What's good for crops is not always good for the environment.

Related Nitrogen Reading:

The Story of N: A Social History of the Nitrogen Cycle and the Challenge of Sustainability (Studies in Modern Science, Technology, a)
by Hugh S. Gorman (Author)

The Nitrogen Cycle (Let's Find Out!)
by Bobi Martin (Author)

Shortcut Nitrogen Removal-Nitrite Shunt and Deammonification
by Water Environment Federation (Author)

The Nitrogen Cycle (Earth's Cycles in Action)
by Diane Dakers (Author)

Nitrogen Fix

Nitrogen Capture: The Growth of an International Industry (1900–1940)
by Anthony S. Travis (Author)

The World of Nitrogen
by Isaac Asimov (Author)

Carbon-Oxygen and Nitrogen Cycles: Respiration, Photosynthesis, and Decomposition (Earth's Processes)
by Rebecca Harman (Author)

Chemical Evolution of Nitrogen-based Compounds in Mozzarella Cheeses (SpringerBriefs in Molecular Science)
by Caterina Barone (Author), Marcella Barebera (Contributor), Michele Barone (Contributor), Salvatore Parisi (Contributor), Aleardo Zaccheo (Contributor)

Reactions: An Illustrated Exploration of Elements, Molecules, and Change in the Universe
by Theodore Gray (Author)

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".