Nav: Home

New photodetector could improve night vision, thermal sensing and medical imaging

June 27, 2018

Using graphene, one of science's most versatile materials, engineers from the UCLA Samueli School of Engineering have invented a new type of photodetector that can work with more types of light than its current state-of-the-art counterparts. The device also has superior sensing and imaging capabilities.

Photodetectors are light sensors; in cameras and other imaging devices, they sense patterns of elementary particles called photons, and create images from those patterns. Different photodetectors are built to sense different parts of the light spectrum. For example, photodetectors are used in night vision goggles to sense thermal radiation that is invisible to the naked eye. Others are used in cameras that identify chemicals in the environment by how they reflect light.

How versatile and useful photodetectors are depends largely on three factors: their operating speed, their sensitivity to lower levels of light, and how much of the spectrum they can sense. Typically, when engineers have improved a photodetector's capabilities in any one of those areas, at least one of the two other capabilities has been diminished.

The photodetector designed by the UCLA team has major improvements in all three areas - it operates across a broad range of light, processes images more quickly and is more sensitive to low levels of light than current technology.

"Our photodetector could extend the scope and potential uses of photodetectors in imaging and sensing systems," said Mona Jarrahi, a professor of electrical and computer engineering, who led the study. "It could dramatically improve thermal imaging in night vision or in medical diagnosis applications where subtle differences in temperatures can give doctors a lot of information on their patients. It could also be used in environmental sensing technologies to more accurately identify the concentration of pollutants."

The study was published in the journal Light: Science and Applications.

The new photodetector takes advantage of the unique properties of graphene, a super-thin material made up of a single layer of carbon atoms. Graphene is an excellent material for detecting photons because it can absorb energy from a broad swath of the electromagnetic spectrum -- from ultraviolet light to visible light to the infrared and microwave bands. Graphene is also a very good conductor of electrical current -- electrons can flow through it unimpeded.

To form the photodetector, the researchers laid strips of graphene over a silicon dioxide layer, which itself covers a base of silicon. Then, they created a series of comb-like nanoscale patterns, made of gold, with "teeth" about 100 nanometers wide. (A nanometer is one-billionth of a meter.)

The graphene acts as a net to catch incoming photons and then convert them into an electrical signal. The gold comb-shaped nanopatterns quickly transfer that information into a processor, which in turn produces a corresponding high-quality image, even under low-light conditions.

"We specifically designed the dimensions of the graphene nanostripes and their metal patches such that incoming visible and infrared light is tightly confined inside them," said Semih Cakmakyapan, a UCLA postdoctoral scholar and the lead author of the study. "This design efficiently produces an electrical signal that follows ultrafast and subtle variations in the light's intensity over the entire spectral range, from visible to infrared."
-end-
The study's other authors were UCLA graduate students Ping Keng Lu and Aryan Navabi.

The research was supported by the Department of Energy.

UCLA Samueli School of Engineering

Related Graphene Articles:

New chemical method could revolutionize graphene
University of Illinois at Chicago scientists have discovered a new chemical method that enables graphene to be incorporated into a wide range of applications while maintaining its ultra-fast electronics.
Searching beyond graphene for new wonder materials
Graphene, the two-dimensional, ultra lightweight and super-strong carbon film, has been hailed as a wonder material since its discovery in 2004.
New method of characterizing graphene
Scientists have developed a new method of characterizing graphene's properties without applying disruptive electrical contacts, allowing them to investigate both the resistance and quantum capacitance of graphene and other two-dimensional materials.
Chemically tailored graphene
Graphene is considered as one of the most promising new materials.
Beyond graphene: Advances make reduced graphene oxide electronics feasible
Researchers have developed a technique for converting positively charged (p-type) reduced graphene oxide (rGO) into negatively charged (n-type) rGO, creating a layered material that can be used to develop rGO-based transistors for use in electronic devices.
The Graphene 2017 Conference connects Barcelona with the international graphene-based industry
This prestigious Conference to be held at the Barcelona International Convention Centre (March 28-31) aims to bring together academia and industry to integrate new graphene technologies into practical applications.
Graphene from soybeans
A breakthrough by CSIRO-led scientists has made the world's strongest material more commercially viable, thanks to the humble soybean.
First use of graphene to detect cancer cells
By interfacing brain cells onto graphene, researchers at the University of Illinois at Chicago have shown they can differentiate a single hyperactive cancerous cell from a normal cell, pointing the way to developing a simple, noninvasive tool for early cancer diagnosis.
Development of graphene microwave photodetector
DGIST developed cryogenic microwave photodetector which is able to detect 100,000 times smaller light energy compared to the existing photedetectors.
Adding hydrogen to graphene
IBS researchers report a fundamental study of how graphene is hydrogenated.

Related Graphene Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Moving Forward
When the life you've built slips out of your grasp, you're often told it's best to move on. But is that true? Instead of forgetting the past, TED speakers describe how we can move forward with it. Guests include writers Nora McInerny and Suleika Jaouad, and human rights advocate Lindy Lou Isonhood.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...