'Mystical' psychedelic compound found in normal brains

June 27, 2019

In the past few years, thrill-seekers from Hollywood, Silicon Valley and beyond have been travelling to South America to take part in so-called Ayahuasca retreats. Their goal: to partake in a brewed concoction made from a vine plant Banisteriopsis caapi, traditionally used by indigenous people for sacred religious ceremonies. Drinkers of Ayahuasca experience short-term hallucinogenic episodes many describe as life-changing.

The active ingredient responsible for these psychedelic visions is a molecule called dimethyltryptamine (DMT). For the first time, a team led by Michigan Medicine has discovered the widespread presence of naturally-occurring DMT in the mammalian brain. The finding is the first step toward studying DMT-- and figuring out its role -- within the brains of humans.

"DMT is not just in plants, but also can be detected in mammals," says Jimo Borjigin, Ph.D., of the Department of Molecular and Integrative Physiology. Her interest in DMT came about accidentally. Before studying the psychedelic, her research focused on melatonin production in the pineal gland.

In the seventeenth century, the philosopher Rene Descartes claimed that the pineal gland, a small pinecone-shaped organ located deep in the center of the brain, was the seat of the soul. Since its discovery, the pineal gland, known by some as the third eye, has been shrouded in mystery. Scientists now know it controls the production of melatonin, playing an important role in modulating circadian rhythms, or the body's internal clock. However, an online search for notes to include in a course she was teaching opened Borjigin's eyes to a thriving community still convinced of the pineal gland's mystical power.

The core idea seems to come from a documentary featuring the work of researcher Rick Strassman, Ph.D. with the University of New Mexico School of Medicine. In the mid-1990s, he conducted an experiment in which human subjects were given DMT by IV injection and interviewed after its effects wore off. In a documentary about the experiment, Strassman claims that he believed the pineal gland makes and secretes DMT.

"I said to myself, 'wait, I've worked on the pineal gland for years and have never heard of this,'" she said. She contacted Strassman, requesting the source of his statement. When Strassman admitted that it was just a hypothesis, Borjigin suggested they work together to test it. "I thought if DMT is an endogenous monoamine, it should be very easy to detect using a fluorescence detector."

Using a process in which microdialysis tubing is inserted into a rat brain through the pineal gland, the researchers collected a sample that was analyzed for -- and confirmed -- the presence of DMT. That experiment resulted in a paper published in 2013.

However, Borjigin was not satisfied. Next, she sought to discover how and where DMT was synthesized. Her graduate student, Jon Dean, lead author of the paper, set up an experiment using a process called in situ hybridization, which uses a labeled complementary strand of DNA to localize a specific RNA sequence in a tissue section.

"With this technique, we found brain neurons with the two enzymes required to make DMT," says Borjigin. And they were not just in the pineal gland.

"They are also found in other parts of the brain, including the neocortex and hippocampus that are important for higher-order brain functions including learning and memory."

The results are published in the journal Scientific Reports.

Her team's work has also revealed that the levels of DMT increase in some rats experiencing cardiac arrest. A paper published in 2018 by researchers in the U.K. purported that DMT simulates the near death experience, wherein people report the sensation of transcending their bodies and entering another realm. Borjigin hopes to probe further to discover the function of naturally occurring levels of DMT in the brain -- and what if any role it plays in normal brain functions.

"We don't know what it's doing in the brain. All we're saying is we discovered the neurons that make this chemical in the brain, and they do so at levels similar to other monoamine neurotransmitters."
-end-


Michigan Medicine - University of Michigan

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.