Nav: Home

Applying pressure is way toward generating more electricity from waste heat

June 27, 2019

Osaka, Japan - Researchers at Osaka University have been able to enhance the power factor of a promising thermoelectric material by more than 100% by varying the pressure, paving the way for new materials with improved thermoelectric properties. Thermoelectric materials have the unique ability to generate electricity from temperature differences and therefore could potentially be used to convert otherwise wasted heat (such as heat from hot laptops or servers) into usable electricity.

In addition to improving the thermoelectric properties of a material, the researchers revealed that the material's thermoelectric properties originate from a transition in the topology of the electronic band structure, which is referred to as the Lifshitz transition. This transition differs from the conventional Landau-type phase transition, because it occurs without any symmetry breaking. Researchers have long had reason to believe that the Lifshitz transition plays a crucial role in many quantum phenomena, such as superconductivity, complex magnetism, and thermoelectric properties, but they lacked direct proof.

In this new study, Osaka University researchers have shown a direct link between the Lifshitz transition and physical properties in a thermoelectric material. "We were able to keep track of the Lifshitz transition by applying pressure and measuring the quantum oscillations as the pressure was increased," corresponding author Hideaki Sakai says.

The researchers studied tin selenide (SnSe), a thermoelectric material that is also a semiconductor with a small amount of conducting carriers. In semiconductors the lower energy valence band is filled with electrons whereas the higher energy conduction band is empty of them; once some impurities and/or chemical defects are introduced, conducting carriers are introduced as electrons and holes in the conduction and valence bands, respectively, and the semiconductor will behave like a conductor. Apart from having an effect on the material's electrical conduction properties, the band structure also has an effect on quantum phenomena, such as their thermoelectric abilities. The valence bands of tin selenide are not completely flat, but normally have two valleys in them.

"When we increased the pressure on the material, we observed a change from two to four valleys in the material when the Lifshitz transition occurred," Hideaki Sakai says. The researchers were able to show both experimentally and theoretically that this change in the number of valleys was directly responsible for significantly improving tin selenide's thermoelectric properties.

The results of the study may help prepare improved thermoelectric materials in the future and could also help clarify the effect of the Lifshitz transition on various transport properties, leading to potential applications such as novel electronics utilizing valley degrees of freedom in the band structure.
-end-
The article, "Large Enhancement of Thermoelectric Efficiency Due to a Pressure-Induced Lifshitz Transition in SnSe" was published in Physical Review Letters at DOI: 10.1103/PhysRevLett.122.226601

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: https://resou.osaka-u.ac.jp/en/top

Osaka University

Related Thermoelectric Materials Articles:

Searching beyond graphene for new wonder materials
Graphene, the two-dimensional, ultra lightweight and super-strong carbon film, has been hailed as a wonder material since its discovery in 2004.
One-dimensional crystals for low-temperature thermoelectric cooling
Nagoya University researchers studied the thermal and electrical properties of one-dimensional crystals composed of tantalum, silicon and tellurium for thermoelectric cooling at temperatures below 250 K (-23°C).
A new tool for discovering nanoporous materials
EPFL scientists have developed a mathematical 'face-recognition' method for identifying and discovering nanoporous materials based on their pore size.
Stenciling with atoms in 2-dimensional materials possible
The possibilities for the new field of two-dimensional, one-atomic-layer-thick materials, including but not limited to graphene, appear almost limitless.
Materials that emit rainbows
Chemists at Osaka University design material that emits different colors upon mechanical stimulation at unexpectedly high efficiency.
More Thermoelectric Materials News and Thermoelectric Materials Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Teaching For Better Humans
More than test scores or good grades — what do kids need to prepare them for the future? This hour, guest host Manoush Zomorodi and TED speakers explore how to help children grow into better humans, in and out of the classroom. Guests include educators Olympia Della Flora and Liz Kleinrock, psychologist Thomas Curran, and writer Jacqueline Woodson.
Now Playing: Science for the People

#535 Superior
Apologies for the delay getting this week's episode out! A technical glitch slowed us down, but all is once again well. This week, we look at the often troubling intertwining of science and race: its long history, its ability to persist even during periods of disrepute, and the current forms it takes as it resurfaces, leveraging the internet and nationalism to buoy itself. We speak with Angela Saini, independent journalist and author of the new book "Superior: The Return of Race Science", about where race science went and how it's coming back.