Nav: Home

Brain structure determines individual differences regarding music sensitivity

June 27, 2019

The white matter structure in the brain reflects music sensitivity, according to a study by the research group on Cognition and Brain Plasticity of the Institute of Neurosciences of the University of Barcelona (UB) and the Bellvitge Biomedical Research Institute (UB-IDIBELL).

The study, published in Journal of Neuroscience, shows that white matter connectivity, the tissue through which the different areas in the central nervous system communicate, is essential to understand why we like or dislike music. Also, it shows that brain reward structures have to work with perception structures so that people enjoy music.

UB researcher Josep Marco-Pallarés leads a study in which Antoni Rodríguez-Fornells (UB-IDIBELL-ICREA), Noelia Martínez-Molina, from the University of Helsinki (Finland), and Ernest Mas-Herrero and Robert Zatorre, from the McGill University (Canada)- have taken part.

People who do not feel any pleasure with music

Listening to music is regarded as a satisfying activity, but previous studies by this group showed there is an individual unevenness: there are people who could not live without music, and others who do not enjoy it at all, a condition that has been called specific musical anhedonia. According to Josep Marco-Pallarés, "this phenomenon occurs to healthy people, without any pathology. Therefore, people with specific musical anhedonia enjoy other stimuli (such as food, or money rewards), but they are not sensitive to a musical reward".

The study of the specific musical anhedonia determined that individual differences regarding musical rewards were related to the functional connectivity (different patterns of neuronal activation in different brain regions) in the auditory cortex, specifically the supratemporal auditory cortex, and a key area in the rewarding process, the ventral striatum. Thus, musical sensitivity depended on the work of these two areas together.

The objective of the new study was to find out whether musical sensitivity was defined by how perception process areas and reward system areas were connected. The experiment was conducted with thirty-eight healthy volunteers using imaging-functional magnetic resonance, which enables the reconstruction of the structure of the brain white matter, the white matter bundles that connect different brain regions.

Participants' musical sensitivity was determined through the obtained score in a questionnaire created by the same research group, the Barcelona Music Reward Questionnaire (BMRQ), which defined their musical sensitivity. After that, during the magnetic resonance session, participants had to listen to extracts from classical music songs and provide pleasure values ranging from 1 to 4 in real time. To control their brain response in other types of rewards, participants had to play in a money bet activity in which they could win or lose real money. None of the participants showed a low score in the general reward scale, showing that individual differences in the reward process are limited to music and not other stimuli.

The results of the experiment show there is a relation between the white matter structures connecting the musical cortex and the activity in the reward system. According to Josep Marc-Pallarés, "the study shows musical sensitivity is related to white matter structures that connect, on the one hand, the supratemporal auditory cortex with the orbitofrontal cortex, and on the other, the orbitofrontal cortex with the ventral striatum".

Why there is only musical anhedonia?

These results highlight the need to widen the study focus to understand the functioning of the brain reward systems. "We cannot study only the reward network, we need to know how stimuli access the reward system. This could be the key to understand why there are specific anhedonia for a specific stimulus like music but not for other stimuli like games or food, which could have other applications for the understanding of several pathologies that are related to specific addictions or specific anhedonia for a certain stimulus", concludes Josep Marco-Pallarés.
-end-


University of Barcelona

Related Music Articles:

The 'purrfect' music for calming cats
Taking a cat to the vets can be a stressful experience, both for cat and owner.
Young people putting music to the crisis: the role of music as a political expression
On February 1, 2020, the journal Young is publishing a special issue on youth, music and crisis involving Mònica Figueras, José Sánchez-García and Carlos Feixa, researchers from the Youth, Society and Communication Research Group (JOVIS.com) at the Department of Communication.
Music is universal
Exactly what about music is universal, and what varies? Harvard researchers have demonstrated that across cultures, people share psychological mechanisms that make certain songs sound 'right' in specific social and emotional contexts.
Why music makes us feel, according to AI
In a new study, a team of USC researchers, with the help of artificial intelligence, investigated how music affects listeners' brains, bodies and emotions.
The brain's favorite type of music
People prefer songs with only a moderate amount of uncertainty and unpredictability, according to research recently published in JNeurosci.
Watching music move through the brain
Scientists have observed how the human brain represents a familiar piece of music, according to research published in JNeurosci.
Storing data in music
Researchers at ETH Zurich have developed a technique for embedding data in music and transmitting it to a smartphone.
Translating proteins into music, and back
In a surprising marriage of science and art, researchers at MIT have developed a system for converting the molecular structures of proteins, the basic building blocks of all living beings, into audible sound that resembles musical passages.
Making music from proteins (video)
Composers string notes of different pitch and duration together to create music.
Quantum music to my ears
It sounds like an old-school vinyl record, but the distinctive crackle in the music streamed into Chris Holloway's laboratory is atomic in origin.
More Music News and Music Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.