Nav: Home

New technology gives insight into how nanomaterials form and grow

June 27, 2019

EVANSTON, Ill. -- A new form of electron microscopy allows researchers to examine nanoscale tubular materials while they are "alive" and forming liquids -- a first in the field.

Developed by a multidisciplinary team at Northwestern University and the University of Tennessee, the new technique, called variable temperature liquid-phase transmission electron microscopy (VT-LPTEM), allows researchers to investigate these dynamic, sensitive materials with high resolution. With this information, researchers can better understand how nanomaterials grow, form and evolve.

"Until now, we could only look at 'dead,' static materials," said Northwestern's Nathan Gianneschi, who co-led the study. "This new technique allows us to examine dynamics directly -- something that could not be done before."

The paper was published online this week in the Journal of the American Chemical Society.

Gianneschi is the Jacob and Rosaline Cohn Professor of Chemistry in Northwestern's Weinberg College of Arts and Sciences, professor of materials science and engineering and biomedical engineering in the McCormick School of Engineering, and associate director of the International Institute for Nanotechnology. He co-led the study with David Jenkins, associate professor of chemistry at University of Tennessee, Knoxville.

After live-cell imaging became possible in the early 20th century, it revolutionized the field of biology. For the first time, scientists could watch living cells as they actively developed, migrated and performed vital functions. Before, researchers could only study dead, fixed cells. The technological leap provided critical insight into the nature and behavior of cells and tissues.

"We think LPTEM could do for nanoscience what live-cell light microscopy has done for biology," Gianneschi said.

LPTEM allows researchers to mix components and perform chemical reactions while watching them unfold beneath a transmission electron microscope.

In this work, Gianneschi, Jenkins and their teams studied metal-organic nanotubes (MONTs). A subclass of metal-organic frameworks, MONTs have high potential for use as nanowires in miniature electronic devices, nanoscale lasers, semiconductors and sensors for detecting cancer biomarkers and virus particles. MONTs, however, are little explored because the key to unlocking their potential lies in understanding how they are formed.

For the first time, the Northwestern and University of Tennessee team watched MONTs form with LPTEM and made the first measurements of finite bundles of MONTs on the nanometer scale.
-end-
The research, "Elucidating the growth of metal-organic nanotubes combining isorecticular synthesis with liquid-cell transmission electron microscopy," was supported by the National Science Foundation (award numbers ECCS-1542205 and DMR-1720139) and the Army Research Office (W911NF-18-1-0359).

The research was a collaboration between Gianneschi's laboratory, which has expertise in transmission electron microscopy, and Jenkins's laboratory, which has expertise in metal-organic nanotubes. Northwestern postdoctoral fellow Karthikeyan Gnanasekaran and University of Tennessee graduate student Kristina Vailonis served as the paper's co-first authors. Gianneschi is also a member of the Simpson Querrey Institute and the Chemistry of Life Processes Institute at Northwestern.

Northwestern University

Related Engineering Articles:

Next frontier in bacterial engineering
A new technique overcomes a serious hurdle in the field of bacterial design and engineering.
COVID-19 and the role of tissue engineering
Tissue engineering has a unique set of tools and technologies for developing preventive strategies, diagnostics, and treatments that can play an important role during the ongoing COVID-19 pandemic.
Engineering the meniscus
Damage to the meniscus is common, but there remains an unmet need for improved restorative therapies that can overcome poor healing in the avascular regions.
Artificially engineering the intestine
Short bowel syndrome is a debilitating condition with few treatment options, and these treatments have limited efficacy.
Reverse engineering the fireworks of life
An interdisciplinary team of Princeton researchers has successfully reverse engineered the components and sequence of events that lead to microtubule branching.
New method for engineering metabolic pathways
Two approaches provide a faster way to create enzymes and analyze their reactions, leading to the design of more complex molecules.
Engineering for high-speed devices
A research team from the University of Delaware has developed cutting-edge technology for photonics devices that could enable faster communications between phones and computers.
Breakthrough in blood vessel engineering
Growing functional blood vessel networks is no easy task. Previously, other groups have made networks that span millimeters in size.
Next-gen batteries possible with new engineering approach
Dramatically longer-lasting, faster-charging and safer lithium metal batteries may be possible, according to Penn State research, recently published in Nature Energy.
What can snakes teach us about engineering friction?
If you want to know how to make a sneaker with better traction, just ask a snake.
More Engineering News and Engineering Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.