Nav: Home

Astronomers make history in a split second

June 27, 2019

In a world first, an Australian-led international team of astronomers has determined the precise location of a powerful one-off burst of cosmic radio waves.

The discovery was made with CSIRO's new Australian Square Kilometre Array Pathfinder (ASKAP) radio telescope in Western Australia. The galaxy from which the burst originated was then imaged by three of the world's largest optical telescopes - Keck, Gemini South and the European Southern Observatory's Very Large Telescope - and the results were published online by the journal Science today.

"This is the big breakthrough that the field has been waiting for since astronomers discovered fast radio bursts in 2007," CSIRO lead author Dr Keith Bannister said.

In the 12 years since then, a global hunt has netted 85 of these bursts. Most have been 'one-offs' but a small fraction are 'repeaters' that recur in the same location.

In 2017 astronomers found a repeater's home galaxy but localising a one-off burst has been much more challenging.

Fast radio bursts last less than a millisecond, making it difficult to accurately determine where they have come from.

Dr Bannister's team developed new technology to freeze and save ASKAP data less than a second after a burst arrives at the telescope.

This technology was used to pinpoint the location of FRB 180924 to its home galaxy (DES J214425.25?405400.81). The team made a high-resolution map showing that the burst originated in the outskirts of a Milky Way-sized galaxy about 3.6 billion light-years away.

"If we were to stand on the Moon and look down at the Earth with this precision, we would be able to tell not only which city the burst came from, but which postcode - and even which city block," Dr Bannister said.

ASKAP is an array of multiple dish antennas and the burst had to travel a different distance to each dish, reaching them all at a slightly different time.

"From these tiny time differences - just a fraction of a billionth of a second - we identified the burst's home galaxy and even its exact starting point, 13,000 light-years out from the galaxy's centre in the galactic suburbs," team member Dr Adam Deller of Swinburne University of Technology said.

To find out more about the home galaxy, the team imaged it with the European Southern Observatory's 8-m Very Large Telescope in Chile and measured its distance with the 10-m Keck telescope in Hawai'i and the 8-m Gemini South telescope in Chile.

The only previously localised burst, the 'repeater' is coming from a very tiny galaxy that is forming lots of stars.

"The burst we localised and its host galaxy look nothing like the 'repeater' and its host," Dr Deller said.

"It comes from a massive galaxy that is forming relatively few stars. This suggests that fast radio bursts can be produced in a variety of environments, or that the seemingly one-off bursts detected so far by ASKAP are generated by a different mechanism to the repeater."

The cause of fast radio bursts remains unknown but the ability to determine their exact location is a big leap towards solving this mystery.

Team member Dr Jean-Pierre Macquart (Curtin University node of the International Centre for Radio Astronomy Research (ICRAR)) is an expert on using fast radio bursts to probe the Universe.

"These bursts are altered by the matter they encounter in space," Dr Macquart said.

"Now we can pinpoint where they come from, we can use them to measure the amount of matter in intergalactic space."

This would reveal material that astronomers have struggled for decades to locate.

The localisation of the radio burst was done as part of a project using ASKAP called CRAFT (Commensal Real-time ASKAP Fast Transients) that is jointly led by Dr Bannister, Dr Macquart and Dr Ryan Shannon of Swinburne University of Technology.

Dr Shannon and CSIRO's Dr Shivani Bhandari carried out the observations and were the first to spot the burst.

Stuart Ryder (Macquarie University, Australia), J. Xavier Prochaska (University of California Santa Cruz, USA) and Nicolas Tejos (Pontificia Universidad Catolica de Valparaiso, Chile) carried out the optical observations.
-end-
ASKAP is located at CSIRO's Murchison Radio-astronomy Observatory and is a precursor to the future Square Kilometre Array telescope. CSIRO acknowledges the Wajarri Yamaji as the traditional owners of the MRO site.

Media contacts:

Annabelle Young, CSIRO
Australia
Annabelle.young@csiro.au
T +61 2 9372 4270 M 0403 928 102

CSIRO Australia

Related Astronomers Articles:

Astronomers capture a pulsar 'powering up'
A Monash-University-led collaboration has, for the first time, observed the full, 12-day process of material spiralling into a distant neutron star, triggering an X-ray outburst thousands of times brighter than our Sun.
Astronomers discover new class of cosmic explosions
Analysis of two cosmic explosions indicates to astronomers that the pair, along with a puzzling blast from 2018, constitute a new type of event, with similarities to some supernovae and gamma-ray bursts, but also with significant differences.
Astronomers discover planet that never was
What was thought to be an exoplanet in a nearby star system likely never existed in the first place, according to University of Arizona astronomers.
Canadian astronomers determine Earth's fingerprint
Two McGill University astronomers have assembled a 'fingerprint' for Earth, which could be used to identify a planet beyond our Solar System capable of supporting life.
Astronomers help wage war on cancer
Techniques developed by astronomers could help in the fight against breast and skin cancer.
Astronomers make history in a split second
In a world first, an Australian-led international team of astronomers has determined the precise location of a powerful one-off burst of cosmic radio waves.
Astronomers witness galaxy megamerger
Using the Atacama Large Millimeter/submillimeter Array (ALMA), an international team of scientists has uncovered a startlingly dense concentration of 14 galaxies that are poised to merge, forming the core of what will eventually become a colossal galaxy cluster.
Astronomers discover a star that would not die
An international team of astronomers has made a bizarre discovery; a star that refuses to stop shining.
Astronomers spun up by galaxy-shape finding
For the first time astronomers have measured how a galaxy's spin affects its shape -- something scientists have tried to do for 90 years -- using a sample of 845 galaxies.
Astronomers unveil 'heart' of Eta Carinae
An international team of astronomers has imaged the Eta Carinae star system -- a colossal binary system that consists of two massive stars orbiting each other -- including a region between the two stars in which extremely high-velocity stellar winds are colliding.
More Astronomers News and Astronomers Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: The Power Of Spaces
How do spaces shape the human experience? In what ways do our rooms, homes, and buildings give us meaning and purpose? This hour, TED speakers explore the power of the spaces we make and inhabit. Guests include architect Michael Murphy, musician David Byrne, artist Es Devlin, and architect Siamak Hariri.
Now Playing: Science for the People

#576 Science Communication in Creative Places
When you think of science communication, you might think of TED talks or museum talks or video talks, or... people giving lectures. It's a lot of people talking. But there's more to sci comm than that. This week host Bethany Brookshire talks to three people who have looked at science communication in places you might not expect it. We'll speak with Mauna Dasari, a graduate student at Notre Dame, about making mammals into a March Madness match. We'll talk with Sarah Garner, director of the Pathologists Assistant Program at Tulane University School of Medicine, who takes pathology instruction out of...
Now Playing: Radiolab

What If?
There's plenty of speculation about what Donald Trump might do in the wake of the election. Would he dispute the results if he loses? Would he simply refuse to leave office, or even try to use the military to maintain control? Last summer, Rosa Brooks got together a team of experts and political operatives from both sides of the aisle to ask a slightly different question. Rather than arguing about whether he'd do those things, they dug into what exactly would happen if he did. Part war game part choose your own adventure, Rosa's Transition Integrity Project doesn't give us any predictions, and it isn't a referendum on Trump. Instead, it's a deeply illuminating stress test on our laws, our institutions, and on the commitment to democracy written into the constitution. This episode was reported by Bethel Habte, with help from Tracie Hunte, and produced by Bethel Habte. Jeremy Bloom provided original music. Support Radiolab by becoming a member today at Radiolab.org/donate.     You can read The Transition Integrity Project's report here.