NJIT conducts the largest-ever simulation of the Deepwater Horizon spill

June 27, 2019

In a 600-ft.-long saltwater wave tank on the coast of New Jersey, a team of New Jersey Institute of Technology (NJIT) researchers is conducting the largest-ever simulation of the Deepwater Horizon spill to determine more precisely where hundreds of thousands of gallons of oil dispersed following the drilling rig's explosion in the Gulf of Mexico in 2010.

Led by Michel Boufadel, director of NJIT's Center for Natural Resources (CNR), the initial phase of the experiment involved releasing several thousand gallons of oil from a one-inch pipe dragged along the bottom of the tank in order to reproduce ocean current conditions.

"The facility at Ohmsett allows us to simulate as closely as possible the conditions at sea, and to thus observe how droplets of oil formed and the direction and distance they traveled," Boufadel said.

Later this summer, his team will conduct the second phase of the experiment, when they will apply dispersants to the oil as it shoots into the tank to observe the effects on droplet formation and trajectory.

His team's research, conducted at the U.S. Department of the Interior's Ohmsett facility at Naval Weapons Station Earle in Leonardo, N.J., was detailed in a recent article, "The perplexing physics of oil dispersants," in the Proceedings of the National Academy of Sciences (PNAS).

"These experiments are the largest ever conducted by a university in terms of the volume of oil released and the scale," he noted. "The data we obtained, which has not been published yet, is being used by other researchers to calibrate their models."

The team expects to come away from these experiments with insights they can apply to a variety of ocean-based oil releases.

"Rather than limiting ourselves to a forensic investigation of the Deepwater Horizon release, we are using that spill to explore spill scenarios more generally," Boufadel said. "Our goal is not to prepare for the previous spill, but to broaden the horizons to explore various scenarios."

More than nine years after the Deepwater Horizon drilling rig exploded, sending up to 900,000 tons of oil and natural gas into the Gulf of Mexico, there are, however, lingering questions about the safety and effectiveness of a key element of the emergency response: injecting chemicals a mile below the ocean surface to break up oil spewing from the ruptured sub-sea wellhead to prevent it from reaching environmentally sensitive regions.

To date, spill cleanups have focused primarily on removing or dispersing oil on the ocean surface and shoreline, habitats deemed more important ecologically. Knowledge of the deep ocean is in general far murkier, and at the time of the accident, BP's drilling operation was the deepest in the world.

Two years ago, Boufadel and collaborators from the Woods Hole Oceanographic Institution, NJIT, Texas A&M University and the Swiss Federal Institute of Aquatic Science and Technology pooled their scientific and technical expertise to provide some of the first answers to these controversial policy questions.

The team began by developing physical models and computer simulations to determine the course the oil and gas took following the eruption, including the fraction of larger, more buoyant droplets that floated to the surface and the amount of smaller droplets entrapped deep below it due to sea stratification and currents. Boufadel and Lin Zhao, a postdoctoral researcher in the CNR, developed a model that predicted the size of droplets and gas bubbles emanating from the wellhead during the sub-surface blowout; they then factored in water pressure, temperature and oil properties into the model, and employed it to analyze the effects of the injected dispersants on this stream.

"Among other tests of our model, we studied the hydrodynamics of various plumes of oil jetting into different wave tanks," Zhao noted. Researchers at Texas A&M in turn created a model to study the movement of pollutants away from the wellhead.

The researchers determined that the use of dispersants had a substantial impact on air quality in the region of the spill by reducing the amount of toxic compounds such as benzene that reached the surface of the ocean, thus protecting emergency workers on the scene from the full brunt of the pollution. Their study was published in PNAS.

"Government and industry responders were faced with an oil spill of unprecedented size and sea depth, pitting them in a high-stakes battle against big unknowns," Christopher Reddy, a senior scientist at Woods Hole Oceanographic Institution, and Samuel Arey, a senior researcher at the Swiss Federal Institute of Aquatic Science and Technology, wrote in Oceanus magazine.

"Environmental risks posed by deep-sea petroleum releases are difficult to predict and assess due to the lack of prior investigations," Boufadel noted. "There is also a larger debate about the impact of chemical dispersants. There is a school of thought that says all of the oil should be removed mechanically."

Boufadel added that the water-soluble and volatile compounds that did not reach the surface were entrapped in a water mass that formed a stable intrusion at 900 to 1,300 meters below the surface.

"These predictions depend on local weather conditions that can vary from day to day. However, we predict that clean-up delays would have been much more frequent if subsurface dispersant injection had not been applied," Reddy and Arey said, adding, "But this is not the final say on the usage of dispersants."

The current experiment is an attempt to provide more definitive answers.
-end-
About New Jersey Institute of Technology:

One of only 32 polytechnic universities in the United States, New Jersey Institute of Technology (NJIT) prepares students to become leaders in the technology-dependent economy of the 21st century. NJIT's multidisciplinary curriculum and computing-intensive approach to education provide technological proficiency, business acumen and leadership skills. NJIT is rated an "R1" research university by the Carnegie Classification®, which indicates the highest level of research activity. NJIT conducts approximately $162 million in research activity each year and has a $2.8 billion annual economic impact on the State of New Jersey. NJIT is ranked #1 nationally by Forbes for the upward economic mobility of its lowest-income students and is among the top 2 percent of public colleges and universities in return on educational investment, according to PayScale.com. NJIT also is ranked by U.S. News and World Report as one of the top 50 public national universities.

New Jersey Institute of Technology

Related Technology Articles from Brightsurf:

December issue SLAS Technology features 'advances in technology to address COVID-19'
The December issue of SLAS Technology is a special collection featuring the cover article, ''Advances in Technology to Address COVID-19'' by editors Edward Kai-Hua Chow, Ph.D., (National University of Singapore), Pak Kin Wong, Ph.D., (The Pennsylvania State University, PA, USA) and Xianting Ding, Ph.D., (Shanghai Jiao Tong University, Shanghai, China).

October issue SLAS Technology now available
The October issue of SLAS Technology features the cover article, 'Role of Digital Microfl-uidics in Enabling Access to Laboratory Automation and Making Biology Programmable' by Varun B.

Robot technology for everyone or only for the average person?
Robot technology is being used more and more in health rehabilitation and in working life.

Novel biomarker technology for cancer diagnostics
A new way of identifying cancer biomarkers has been developed by researchers at Lund University in Sweden.

Technology innovation for neurology
TU Graz researcher Francesco Greco has developed ultra-light tattoo electrodes that are hardly noticeable on the skin and make long-term measurements of brain activity cheaper and easier.

April's SLAS Technology is now available
April's Edition of SLAS Technology Features Cover Article, 'CURATE.AI: Optimizing Personalized Medicine with Artificial Intelligence'.

Technology in higher education: learning with it instead of from it
Technology has shifted the way that professors teach students in higher education.

Post-lithium technology
Next-generation batteries will probably see the replacement of lithium ions by more abundant and environmentally benign alkali metal or multivalent ions.

Rethinking the role of technology in the classroom
Introducing tablets and laptops to the classroom has certain educational virtues, according to Annahita Ball, an assistant professor in the University at Buffalo School of Social Work, but her research suggests that tech has its limitations as well.

The science and technology of FAST
The Five hundred-meter Aperture Spherical radio Telescope (FAST), located in a radio quiet zone, with the targets (e.g., radio pulsars and neutron stars, galactic and extragalactic 21-cm HI emission).

Read More: Technology News and Technology Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.