Nav: Home

Brittle prions are more infectious

June 28, 2006

Brittleness is often seen as a sign of fragility. But in the case of infectious proteins called prions, brittleness makes for a tougher, more menacing pathogen. Howard Hughes Medical Institute researcher have discovered that brittle prion particles break more readily into new "seeds," which spread infection much more quickly.

The discovery boosts basic understanding of prion infections, and could provide scientists with new ideas for designing drugs that discourage or prevent prion seeding, said the study's senior author Jonathan Weissman, a Howard Hughes Medical Institute investigator at the University of California, San Francisco (UCSF).

Weissman and colleagues from UCSF reported their findings on June 28, 2006, in an advance online publication in Nature.

The scientists studied yeast prions, which are similar to mammalian prions in that they act as infectious proteins. In recent years, mammalian prions have gained increasing notoriety for their roles in such fatal brain-destroying human diseases as Creutzfeldt-Jakob disease and kuru, and in the animal diseases, bovine spongiform encephalopathy ("mad cow" disease) and scrapie.

Yeast and mammalian prions are proteins that transmit their unique characteristics via interactions in which an abnormally shaped prion protein influences a normal protein to assume an abnormal shape. In mammalian prion infections, these abnormal shapes trigger protein clumping that can kill brain cells. In yeast cells, the insoluble prion protein is not deadly; it merely alters a cell's metabolism. Prions propagate themselves by division of the insoluble clumps to create "seeds" that can continue to grow by causing aggregation of more proteins.

In earlier studies, Weissman and his colleagues had discovered that the same prion can exist in different strains and have different infectious properties. These strains arise from different misfoldings of the prion protein that result in different conformations. A similar strain phenomenon has been described for mammalian prions. More generally, even in noninfectious diseases involving protein misfolding, like Alzheimer's and Parkinson's diseases, the same protein can misfold into more than one shape with some forms being toxic and others benign. However, Weissman said, it was not understood how different conformations cause different physiological effects.

As part of the studies published in Nature, the researchers created a mathematical model that enabled them to describe the growth and replication of prions according to the physical properties of the prion protein. To validate that model in yeast, they then created in a test tube, infectious forms of the prion protein in three different conformations and introduced them into yeast cells. They then correlated the strength of infectivity of each prion with its physical properties and compared their results to those predicted by their mathematical model.

According to Weissman, the researchers found that the slowest-growing conformation seemed to have the strongest effect in producing protein aggregates inside cells. "But we knew from our model that growth was only half of the equation," said Weissman. "The other key feature was how easy it was to break up the prion and create new seeds, and this propensity to seed could be an important determinant of the prion's physiological impact. And that is what we found experimentally -- that the slower growth of that conformation was more than compensated for by an increased brittleness that promotes fragmentation."

According to Weissman, the importance of a prion's brittleness, or "frangibility," to its physiological effects has both basic research and clinical implications. "Investigators trying to develop synthetic prions as a research model for mammalian prions have had a very hard time getting a high degree of activity," he said. "Part of the reason may be that they were trying to create forms that were very stable. But that might have been exactly the wrong thing to do, because prions that are too stable may be the ones that are not very infectious because the aggregates are hard to break up.

"And from a therapeutic point of view, our findings suggest that effective treatment strategies for prion diseases might aim at stabilizing prion aggregates. By preventing the aggregates from being broken up to smaller seeds, their propagation can be reduced. In contrast, most such strategies now aim at preventing the proteins from forming in the first place," he said.

In future studies, Weissman and his colleagues plan to expand their analytical model to describe in more detail how prions' physical properties lead to different physiological effects. They also plan more detailed analyses to examine how the molecular structure of a prion protein gives rise to its physical properties.
-end-


Howard Hughes Medical Institute

Related Proteins Articles:

Discovering, counting, cataloguing proteins
Scientists describe a well-defined mitochondrial proteome in baker's yeast.
Interrogating proteins
Scientists from the University of Bristol have designed a new protein structure, and are using it to understand how protein structures are stabilized.
Ancient proteins studied in detail
How did protein interactions arise and how have they developed?
What can we learn from dinosaur proteins?
Researchers recently confirmed it is possible to extract proteins from 80-million-year-old dinosaur bones.
Relocation of proteins with a new nanobody tool
Researchers at the Biozentrum of the University of Basel have developed a new method by which proteins can be transported to a new location in a cell.
Proteins that can take the heat
Ancient proteins may offer clues on how to engineer proteins that can withstand the high temperatures required in industrial applications, according to new research published in the Proceedings of the National Academy of Sciences.
Designer proteins fold DNA
Florian Praetorius and Professor Hendrik Dietz of the Technical University of Munich have developed a new method that can be used to construct custom hybrid structures using DNA and proteins.
The proteins that domesticated our genomes
EPFL scientists have carried out a genomic and evolutionary study of a large and enigmatic family of human proteins, to demonstrate that it is responsible for harnessing the millions of transposable elements in the human genome.
Rare proteins collapse earlier
Some organisms are able to survive in hot springs, while others can only live at mild temperatures because their proteins aren't able to withstand such extreme heat.
How proteins reshape cell membranes
Small 'bubbles' frequently form on membranes of cells and are taken up into their interior.

Related Proteins Reading:

Proteins: Structure and Function
by David Whitford (Author)

Protein Sparing Modified Fast Cookbook
by Maria Emmerich (Author), Craig Emmerich (Author)

Proteins (Explore the molecules of life)
by Tali Lavy (Author), Ofir Corcos (Illustrator)

Protein Power: The High-Protein/Low Carbohydrate Way to Lose Weight, Feel Fit, and Boost Your Health-in Just Weeks!
by Michael R. Eades (Author), Mary Dan Eades (Author)

Proteins: Concepts in Biochemistry
by Paulo Almeida (Author)

Plant-Protein Recipes That You'll Love: Enjoy the goodness and deliciousness of 150+ healthy plant-protein recipes!
by Carina Wolff (Author)

The Protein-Packed Breakfast Club: Easy High Protein Recipes with 300 Calories or Less to Help You Lose Weight and Boost Metabolism
by Lauren Harris-Pincus MS RDN (Author)

Clean Protein: The Revolution that Will Reshape Your Body, Boost Your Energy—and Save Our Planet
by Kathy Freston (Author), Bruce Friedrich (Author)

Protein: Protein Food
by Cathy Wilson (Author)

The Protein Power Lifeplan
by Michael R. Eades (Author), Mary Dan Eades (Author)

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Why We Hate
From bullying to hate crimes, cruelty is all around us. So what makes us hate? And is it learned or innate? This hour, TED speakers explore the causes and consequences of hate — and how we can fight it. Guests include reformed white nationalist Christian Picciolini, CNN commentator Sally Kohn, podcast host Dylan Marron, and writer Anand Giridharadas.
Now Playing: Science for the People

#482 Body Builders
This week we explore how science and technology can help us walk when we've lost our legs, see when we've gone blind, explore unfriendly environments, and maybe even make our bodies better, stronger, and faster than ever before. We speak to Adam Piore, author of the book "The Body Builders: Inside the Science of the Engineered Human", about the increasingly amazing ways bioengineering is being used to reverse engineer, rebuild, and augment human beings. And we speak with Ken Thomas, spacesuit engineer and author of the book "The Journey to Moonwalking: The People That Enabled Footprints on the Moon" about...