Nav: Home

Danish researchers identify possible link between the environment and puberty

June 28, 2016

Danish researchers have discovered a possible epigenetic link between the environment and pubertal timing. To a large extent, pubertal timing is heritable, but the underlying genetic causes are still unexplained. Researchers have now studied how chemical modifications of the human genome (so-called epigenetic modifications) change when girls and boys enter puberty. The results indicate that such epigenetic changes are involved in defining the onset of puberty.

Danish girls' pubertal onset has decreased from 11 to 10 years. Similar, but less pronounced, changes have been observed in boys. This has led researchers to question the involvement of genetics and recognize that genes are not alone in influencing a child's pubertal timing.

In this new study from EDMaRC at Rigshospitalet, Copenhagen, researchers therefore focused on the role of epigenetics and have found a number of areas in the human genome, which is controlled epigenetically during puberty. The researchers found that these epigenetic changes cause the upregulation of genes that are important for pubertal development. One of the newly discovered 'puberty genes' is TRIP6 (Thyroid Hormone Receptor Interactor 6), which is increasingly expressed through puberty, due to changes in the epigenetic control of the gene.

Epigenetics is a leading mechanism by which our environment communicates with our genes. Environmental and lifestyle factors in the broadest sense can affect the epigenetic regulation of genes and thereby control whether, where and to what extent the genes are expressed. The identified epigenetic changes during puberty are therefore our best lead towards understanding how environmental factors can affect pubertal onset.

"To our knowledge, this study is the first to demonstrate how the environment can affect the pubertal onset in humans. It gives us a significant insight in to the crucial role of epigenetic factors on our reproductive development," says Professor Anders Juul, Senior author of the study.

"We've seen a tendency of especially girls starting puberty earlier than before and this study emphasizes the importance of understanding the role of environmental impact on pubertal development," he adds.

Highly specific changes in methylation of a child's DNA could differentiate children according to whether they had entered puberty or not and thus may be used to predict a child's pubertal stage.

"Changes in the DNA methylation patterns can be caused by many different factors. However, we could see very specific changes when children went through puberty, and have subsequently shown that this also leads to changes in the expression of the methylated genes," says Senior Researcher in epigenetics Kristian Almstrup, who led the study.
-end-
About EDMaRC

EDMaRC is the international center for research and research training in Endocrine Disruption of Male Reproduction and Child Health. EDMaRC is located at the Department of Growth and Reproduction at Rigshospitalet and has close collaboration with the University of Copenhagen.

University of Copenhagen The Faculty of Health and Medical Sciences

Related Human Genome Articles:

Scientists generate an atlas of the human genome using stem cells
Scientists from the Hebrew University of Jerusalem have generated an atlas of the human genome that illuminates the roles our genes play in health and disease.
New limits to functional portion of human genome reported
An evolutionary biologist at the University of Houston has published new calculations that indicate no more than 25 percent of the human genome is functional.
Synthesizing the human genome from scratch
For the past 15 years, synthetic biologists have been figuring out how to synthesize an organism's complete set of DNA, including all of its genes.
Science and legal experts debate future uses and impact of human genome editing in Gender & the Genome
Precise, economical genome editing tools such as CRISPR have made it possible to make targeted changes in genes, which could be applied to human embryos to correct mutations, prevent disease, or alter traits.
Evolution purged many Neanderthal genes from human genome
Neanderthal genetic material is found in only small amounts in the genomes of modern humans because, after interbreeding, natural selection removed large numbers of weakly deleterious Neanderthal gene variants, according to a study by Ivan Juric and colleagues at the University of California, Davis, published Nov.
More Human Genome News and Human Genome Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...