Nav: Home

Danish researchers identify possible link between the environment and puberty

June 28, 2016

Danish researchers have discovered a possible epigenetic link between the environment and pubertal timing. To a large extent, pubertal timing is heritable, but the underlying genetic causes are still unexplained. Researchers have now studied how chemical modifications of the human genome (so-called epigenetic modifications) change when girls and boys enter puberty. The results indicate that such epigenetic changes are involved in defining the onset of puberty.

Danish girls' pubertal onset has decreased from 11 to 10 years. Similar, but less pronounced, changes have been observed in boys. This has led researchers to question the involvement of genetics and recognize that genes are not alone in influencing a child's pubertal timing.

In this new study from EDMaRC at Rigshospitalet, Copenhagen, researchers therefore focused on the role of epigenetics and have found a number of areas in the human genome, which is controlled epigenetically during puberty. The researchers found that these epigenetic changes cause the upregulation of genes that are important for pubertal development. One of the newly discovered 'puberty genes' is TRIP6 (Thyroid Hormone Receptor Interactor 6), which is increasingly expressed through puberty, due to changes in the epigenetic control of the gene.

Epigenetics is a leading mechanism by which our environment communicates with our genes. Environmental and lifestyle factors in the broadest sense can affect the epigenetic regulation of genes and thereby control whether, where and to what extent the genes are expressed. The identified epigenetic changes during puberty are therefore our best lead towards understanding how environmental factors can affect pubertal onset.

"To our knowledge, this study is the first to demonstrate how the environment can affect the pubertal onset in humans. It gives us a significant insight in to the crucial role of epigenetic factors on our reproductive development," says Professor Anders Juul, Senior author of the study.

"We've seen a tendency of especially girls starting puberty earlier than before and this study emphasizes the importance of understanding the role of environmental impact on pubertal development," he adds.

Highly specific changes in methylation of a child's DNA could differentiate children according to whether they had entered puberty or not and thus may be used to predict a child's pubertal stage.

"Changes in the DNA methylation patterns can be caused by many different factors. However, we could see very specific changes when children went through puberty, and have subsequently shown that this also leads to changes in the expression of the methylated genes," says Senior Researcher in epigenetics Kristian Almstrup, who led the study.
-end-
About EDMaRC

EDMaRC is the international center for research and research training in Endocrine Disruption of Male Reproduction and Child Health. EDMaRC is located at the Department of Growth and Reproduction at Rigshospitalet and has close collaboration with the University of Copenhagen.

University of Copenhagen The Faculty of Health and Medical Sciences

Related Human Genome Articles:

Science and legal experts debate future uses and impact of human genome editing in Gender & the Genome
Precise, economical genome editing tools such as CRISPR have made it possible to make targeted changes in genes, which could be applied to human embryos to correct mutations, prevent disease, or alter traits.
Evolution purged many Neanderthal genes from human genome
Neanderthal genetic material is found in only small amounts in the genomes of modern humans because, after interbreeding, natural selection removed large numbers of weakly deleterious Neanderthal gene variants, according to a study by Ivan Juric and colleagues at the University of California, Davis, published Nov.
Mathematical analysis reveals architecture of the human genome
Mathematical analysis has led researchers in Japan to a formula that can describe the movement of DNA inside living human cells.
Navigating the human genome with Sequins
Australian genomics researchers have announced the development of Sequins -- synthetic 'mirror' DNA sequences that reflect the human genome.
Scientists cut 'Gordian knot' in the human genome
Females have two X chromosomes in each of their cells.
Guidelines for human genome editing
As countries around the world seek to craft policy frameworks governing the powerful new genetic editing tool, policy makers need to determine 'thresholds of acceptability' for using the technology, according to three researchers from the Centre of Genomics and Policy at McGill University.
Predicting the human genome using evolution
By observing evolution's 'greatest hits' (and misses) and the history of the major themes and patterns of genome conservation (and divergence) across many species, Temple University professor Sudhir Kumar's approach predicts probable mutations that will be found among people and the fate of human variation.
JAX reseachers, collaborators report on variations in human genome
A consortium of international researchers, including Charles Lee, Ph.D., of The Jackson Laboratory for Genomic Medicine, have reported findings from a massive research project exploring variations in the human genome, including structural variations.
Scientists discover new system for human genome editing
A team including the scientist who first harnessed the revolutionary CRISPR-Cas9 system for mammalian genome editing has now identified a different CRISPR system with the potential for even simpler and more precise genome engineering.
The human genome: A complex orchestra
A team of Swiss geneticists from the University of Geneva, the École Polytechnique Fédérale de Lausanne, and the University of Lausanne discovered that genetic variation has the potential to affect the state of the genome at many, seemingly separated, positions and thus modulate gene activity, much like a conductor directing the performers of a musical ensemble to play in harmony.

Related Human Genome Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...