Nav: Home

Predicting eruptions using satellites and math

June 28, 2017

Volcanologists are beginning to use satellite measurements and mathematical methods to forecast eruptions and to better understand how volcanoes work, shows a new article in Frontiers in Earth Science.

As magma shifts and flows beneath the earth's surface, the ground above flexes and quivers. Modern satellite technologies, similar to GPS, can now track these movements, and geoscientists are beginning to decipher what this reveals about what's happening underground--as well as what is likely to happen in the future.

"We're the first to have developed a strategy using data assimilation to successfully forecast the evolution of magma overpressures beneath a volcano using combined ground deformation datasets measured by Global Navigation Satellite System (more commonly known as GPS) and satellite radar data," explains Mary Grace Bato, lead author of the study and a researcher at the Institut des Sciences de la Terre (ISTerre) in France.

Bato and her collaborators are among the first to test whether data assimilation, a method used to incorporate new measurements with a dynamical model, can also be applied in volcano studies to make sense of such satellite data. Meteorologists have long used a similar technique to integrate atmospheric and oceanic measurements with dynamical models, allowing them to forecast the weather. Climate researchers have also used the same method to estimate the long-term evolution of the climate due to carbon emissions. But volcanologists are just beginning to explore whether the technique can also be used to forecast volcanic eruptions.

"The amount of satellite and ground-based geodetic data (i.e. GPS data) has tremendously increased recently," says Bato. "The challenge is how to use these data efficiently and how to integrate them with models in order to have a deeper understanding of what occurs beneath the volcano and what drives the eruption so that we can determine near-real-time and accurate predictions of volcanic unrest."

In their latest research, Bato and her colleagues have begun answering these questions by simulating one type of volcano--those which erupt with limited "explosivity" due to the build-up of underlying magma pressure. Through their exploratory simulations, Bato was able to correctly predict the excess pressure that drives a theoretical volcanic eruption, as well as the shape of the deepest underground magma reservoir and the flow rate of magma into the reservoir. Such reservoirs are typically miles below the surface and, as such, they're nearly impossible to study with existing methods.

Geoscientists still need to improve current volcanic models before they can be widely applied to real-life volcanoes, but Bato and her colleagues are already beginning to test their methods on the Grímsvötn Volcano in Iceland and the Okmok Volcano in Alaska. They believe that their strategy will be a key step towards more accurate predictions of volcanic behavior.

"We foresee a future where daily or even hourly volcanic forecasts will be possible--just like any other weather bulletin," says Bato.

This research is part of a broader collection of articles focused on volcanic hazard assessment.
-end-


Frontiers

Related Volcano Articles:

What happens under the Yellowstone Volcano
A recent study by Bernhard Steinberger of the German GeoForschungsZentrum and colleagues in the USA helps to better understand the processes in the Earth's interior beneath the Yellowstone supervolcano.
Geoengineering versus a volcano
Major volcanic eruptions spew ash particles into the atmosphere, which reflect some of the Sun's radiation back into space and cool the planet.
How to recognize where a volcano will erupt
Eleonora Rivalta and her team from the GFZ German Research Centre for Geosciences in Potsdam, together with colleagues from the University Roma Tre and the Vesuvius Observatory of the Italian Istituto Nazionale di Geofisica e Vulcanologia in Naples have devised a new method to forecast volcanic vent locations.
Santorini volcano, a new terrestrial analogue of Mars
One of the great attractions of the island of Santorini, in Greece, lies in its spectacular volcanic landscape, which also contains places similar to those of Mars.
Volcano cliffs can affect monitoring data, study finds
New research led by the University of East Anglia reveals that sharp variations of the surface of volcanoes can affect data collected by monitoring equipment.
Ceres takes life an ice volcano at a time
In new study by University of Arizona planetary scientists, observations prove that ice volcanoes on the dwarf planet Ceres generate enough material to fill one movie theater each year.
Yellowstone super-volcano has a different history than previously thought
The long-dormant Yellowstone super-volcano in the American West has a different history than previously thought, according to a new study by a Virginia Tech geoscientist.
Volcano music could help scientists monitor eruptions
A volcano in Ecuador with a deep cylindrical crater might be the largest musical instrument on Earth, producing unique sounds scientists could use to monitor its activity.
Volcano 'libraries' could help plan for future volcanic crises
Crystals from the 2010 Eyjafjallajökull eruption have demonstrated a new way to recognise pre-eruption signals at Eyjafjallajökull and potentially other, similar volcanoes around the world.
Monitoring lava lake levels in Congo volcano
Nyiragongo in the Democratic Republic of the Congo is among the world's most active volcanoes, with a persistent lava lake as one of its defining features.
More Volcano News and Volcano Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.