Nav: Home

Predicting eruptions using satellites and math

June 28, 2017

Volcanologists are beginning to use satellite measurements and mathematical methods to forecast eruptions and to better understand how volcanoes work, shows a new article in Frontiers in Earth Science.

As magma shifts and flows beneath the earth's surface, the ground above flexes and quivers. Modern satellite technologies, similar to GPS, can now track these movements, and geoscientists are beginning to decipher what this reveals about what's happening underground--as well as what is likely to happen in the future.

"We're the first to have developed a strategy using data assimilation to successfully forecast the evolution of magma overpressures beneath a volcano using combined ground deformation datasets measured by Global Navigation Satellite System (more commonly known as GPS) and satellite radar data," explains Mary Grace Bato, lead author of the study and a researcher at the Institut des Sciences de la Terre (ISTerre) in France.

Bato and her collaborators are among the first to test whether data assimilation, a method used to incorporate new measurements with a dynamical model, can also be applied in volcano studies to make sense of such satellite data. Meteorologists have long used a similar technique to integrate atmospheric and oceanic measurements with dynamical models, allowing them to forecast the weather. Climate researchers have also used the same method to estimate the long-term evolution of the climate due to carbon emissions. But volcanologists are just beginning to explore whether the technique can also be used to forecast volcanic eruptions.

"The amount of satellite and ground-based geodetic data (i.e. GPS data) has tremendously increased recently," says Bato. "The challenge is how to use these data efficiently and how to integrate them with models in order to have a deeper understanding of what occurs beneath the volcano and what drives the eruption so that we can determine near-real-time and accurate predictions of volcanic unrest."

In their latest research, Bato and her colleagues have begun answering these questions by simulating one type of volcano--those which erupt with limited "explosivity" due to the build-up of underlying magma pressure. Through their exploratory simulations, Bato was able to correctly predict the excess pressure that drives a theoretical volcanic eruption, as well as the shape of the deepest underground magma reservoir and the flow rate of magma into the reservoir. Such reservoirs are typically miles below the surface and, as such, they're nearly impossible to study with existing methods.

Geoscientists still need to improve current volcanic models before they can be widely applied to real-life volcanoes, but Bato and her colleagues are already beginning to test their methods on the Grímsvötn Volcano in Iceland and the Okmok Volcano in Alaska. They believe that their strategy will be a key step towards more accurate predictions of volcanic behavior.

"We foresee a future where daily or even hourly volcanic forecasts will be possible--just like any other weather bulletin," says Bato.

This research is part of a broader collection of articles focused on volcanic hazard assessment.
-end-


Frontiers

Related Volcano Articles:

Death by volcano?
he discovery of anomalously high levels of mercury in rocks from the Ordivician geological period has led to a new interpretation of the ensuing mass extinction.
Campi Flegrei volcano eruption possibly closer than thought
The Campi Flegrei volcano in southern Italy may be closer to an eruption than previously thought, according to new research by UCL and the Vesuvius Observatory in Naples.
How a young-looking lunar volcano hides its true age
A young-looking volcanic caldera on the moon has been interpreted by some as evidence of relatively recent lunar volcanic activity, but new research suggests it's not so young after all.
Mars volcano, Earth's dinosaurs went extinct about the same time
Arsia Mons produced one new lava flow at its summit every 1 to 3 million years during the final peak of activity, about 50 million years ago.
Volcano breath: Measuring sulfur dioxide from space
In a new study published in Scientific Reports this week, a team led by researchers from Michigan Technological University created the first, truly global inventory for volcanic sulfur dioxide emissions, using data from the Dutch-Finnish Ozone Monitoring Instrument on NASA's Earth Observing System Aura satellite launched in 2004.
Volcano Samalas mystery revealed
The international team of scientists with the participation of Krasnoyarsk dendrochronologists offered their answer to one of the mysteries of climatology and volcanology.
Underwater volcano's eruption captured in exquisite detail by seafloor observatory
Seismic data from the 2015 eruption of Axial Volcano, an underwater volcano about 300 miles off the Oregon coast, has provided the clearest look at the inner workings of a volcano where two ocean plates are moving apart.
Island volcano monitoring system tested at Nishinoshima
In October 2016 a Japanese research team tested a newly-developed island volcano monitoring system in the seas around Nishinoshima, where eruptions have been continuing since November 2013.
Massive 'lake' discovered under volcano that could unlock why and how volcanoes erupt
Scientists from the University of Bristol and partner universities in Germany, France, Canada and Wales, have discovered a huge magmatic lake, 15 km below a dormant volcano in Bolivia, South America.
Gas causing ground to rise near Bay of Naples volcano
New work by Italian geochemists seems to indicate that the current ground movement around one of the world's most dangerous volcano systems may be due to gas pressure, and not because of a surge of volcanic magma.

Related Volcano Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".