Nav: Home

Barrier Proteins in Tumors are Possible Key to Immunotherapy Success

June 28, 2017

By comparing variations in protein expression in tumor samples from a single melanoma patient, researchers from the Johns Hopkins Bloomberg~Kimmel Institute and the Memorial Sloan-Kettering Cancer Center say their findings have the potential to reveal some of the mechanisms underlying response or resistance to immunotherapy drugs. The "proof of concept" findings, published online Feb. 13, 2017, in Clinical Cancer Research, point to distinct variations not in the genetic code of each tumor sample, but in the expression levels of certain proteins encoded by normal genes.

A growing number of anticancer drugs are designed to capitalize on the ability of the immune system to mount a precisely targeted defense against cancer. Among them are checkpoint inhibitors, which unleash an immune response by neutralizing molecular barriers that cancer cells put in place to prevent immune cells from launching a successful attack.

Although these therapies have shown promise, they don't work consistently in all cancer types, or even among different patients with the same type of cancer, notes Suzanne Topalian, M.D., a professor in the Department of Surgery at the Johns Hopkins University School of Medicine and associate director for the Bloomberg~Kimmel Institute. For example, one checkpoint inhibitor, known as anti-PD-1, causes cancers to shrink in about 60 percent of patients with advanced Hodgkin lymphoma, and in about 20 percent of those with head and neck, lung, and bladder cancer. Responses can vary even among different tumor sites in the same patient, she adds.

In a bid to increase the success rate of immunotherapies by tracking down the reasons for these uneven responses, Topalian and colleagues from Johns Hopkins and Memorial Sloan Kettering Cancer Center in New York examined 26 tumors from one 60-year-old patient with melanoma, a potentially lethal skin cancer that has a 40 percent response rate to anti-PD-1.

The patient received anti-PD1 therapy at Johns Hopkins for six months before his sudden death from a non-cancer-related cause, and had been treated for 15 months before that with a different checkpoint inhibitor, anti-CTLA-4. His physicians received permission to perform a research autopsy soon after his death. Samples from four of the patient's tumors were collected over a five-year period prior to his death; the remaining 22 were removed during autopsy.

During the patient's treatment, tumor surveillance with CT scans and clinical examinations had shown that some tumors were shrinking in response to immunotherapy, while others continued to grow.

The patient's history and the unusual access the researchers had to the large number of tumors before and immediately after his death first facilitated two tests to compare responding to non-responding tumors: whole exome sequencing, which determines the genetic sequence for protein-coding regions of the tumor genome; and assessment of immunologic markers, which examines a variety of immune cells and molecules associated with modulating immune responses within tumors. Neither of these tests showed any marked differences between the responding and nonresponding tumors.

Using a different strategy, the researchers looked at the tumors' gene expression profiles, which show how active each gene is in producing proteins. There, the researchers discovered clear differences between the regressing and progressing tumors. Those that didn't respond to a type of immunotherapy called anti-PD-1 expressed approximately 2,000-fold more activity in a gene called LAMA3, responsible for producing a protein molecule that helps cells stick together.

The non-responding tumors also had about fourfold more activity in a gene called CXCR2 associated with the migration of a type of white blood cell called neutrophils, shown in other research to produce substances that dampen the function of T cells, immune system cells primarily responsible for fighting cancer.

To increase the success rates of checkpoint inhibitors and other immunotherapies, Topalian says, researchers may eventually use similar assays reflecting protein levels to develop new drugs or optimize the use of existing ones that target specific barriers impeding antitumor immunity. "We conclude that gene expression analysis is a potentially powerful tool for discovering the Achilles heel for each tumor," Topalian says.

Other Johns Hopkins researchers who participated in this study include Maria L. Ascierto, Evan J. Lipson, Janis M. Taube, Tracee L. McMiller, Alan E. Berger, Jinshui Fan, Genevieve J. Kaunitz, Tricia R. Cottrell, Alexander Favorov, Leslie Cope, Ralph H. Hruban and Drew M. Pardoll.

This work was funded by the Melanoma Research Alliance, the Bloomberg~Kimmel Institute for Cancer Immunotherapy, the Barney Family Foundation, Moving for Melanoma of Delaware, the Laverna Hahn Charitable Trust, the National Cancer Institute (R01 CA142779; 5T32 CA193145; R01 CA179991; P30-CA008748), the MSKCC TROT Fellowship, the Starr Cancer Consortium, the Pershing Square Sohn Cancer Research Alliance, the Immunogenomics and Precision Oncology Platform, and the Marie-Josée and Henry R. Kravis Center for Molecular Oncology.
-end-


Johns Hopkins Medicine

Related Cancer Articles:

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.
Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
More Cancer News and Cancer Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.