Nav: Home

Paving the way for hydrogen fuel cells

June 28, 2017

The hype around hydrogen fuel cells has died down, but scientists have continued to pursue new technologies that could enable such devices to gain a firmer foothold. Now one team has developed an electrocatalyst to replace the currently dominant, but expensive, one of choice -- platinum -- that could help boost the fledgling fuel-cell industry. Their report appears in the journal ACS Nano.

Fuel cells generate power by directly converting chemical energy into electricity. Putting hydrogen fuel cells, which only release water and electricity, into vehicles has been touted as a way to shift transportation toward a cleaner future. One of the obstacles to wide-scale commercialization, however, has been the use of costly platinum-based alloys as the electrocatalyst in proton exchange membrane fuel cells (PEMFCs), the type currently favored for practical applications. James M. Tour, Juncai Dong, Boris I. Yakobson, Emilie Ringe and colleagues set out to find an alternative.

The researchers developed an electrocatalyst using less expensive ruthenium and nitrogen-doped graphene. It showed promise for use in PEMFCs with an onset potential of 0.89 volts, which is comparable to platinum-based electrocatalysts. Some traits, including durability, were even better suited for this application than platinum counterparts. The researchers say that the atomic dispersion of ruthenium on nitrogen-doped graphene could significantly improve the use of metal active components, and also reduce the amount of noble-metal usage. Their findings could also help clear the path toward more practical fuel cells.
-end-
The authors acknowledge funding from the U.S. Air Force Office of Scientific Research, the China Scholarship Council, the American Chemical Society Petroleum Research Fund, the U.S. Department of Energy, the Welch Foundation, the National Natural Science Foundation of China and the Institute of High Energy Physics (Chinese Academy of Sciences).

The paper's abstract will be available on June 28 here: http://pubs.acs.org/doi/abs/10.1021/acsnano.7b02148.

The American Chemical Society is a not-for-profit organization chartered by the U.S. Congress. ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us: Twitter | Facebook

American Chemical Society

Related Electricity Articles:

Microbial fuel cell converts methane to electricity
Transporting methane from gas wellheads to market provides multiple opportunities for this greenhouse gas to leak into the atmosphere.
Exploring the conversion of heat to electricity in single molecules
Researchers at Osaka University investigated the influence of the geometry of single-molecule devices on their ability to produce electricity from heat.
Macrophages conduct electricity, help heart to beat
Macrophages have a previously unrecognized role in helping the mammalian heart beat in rhythm.
Buzzing the brain with electricity can boost working memory
Scientists have uncovered a method for improving short-term working memory, by stimulating the brain with electricity to synchronize brain waves.
Environmentally friendly, almost electricity-free solar cooling
Demand and the need for cooling are growing as the effects of climate change intensify.
1 in 5 residents overuses electricity at neighbors' expense
Household electricity use falls by more than 30 percent when residents are obliged to pay for their own personal consumption.
New approach for matching production and consumption of renewable electricity
VTT Technical Research Centre of Finland is coordinating the BALANCE project, which brings together leading European research institutes in the field of electrochemical conversion.
Electricity costs: A new way they'll surge in a warming world
Climate change is likely to increase US electricity costs over the next century by billions of dollars more than economists previously forecast, according to a new study involving a University of Michigan researcher.
Material can turn sunlight, heat and movement into electricity -- all at once
Many forms of energy surround you: sunlight, the heat in your room and even your own movements.
For this metal, electricity flows, but not the heat
Berkeley scientists have discovered that electrons in vanadium dioxide can conduct electricity without conducting heat, an exotic property in an unconventional material.

Related Electricity Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".